Status and perpective for the validation of the MERIS 3rd reprocessing Level 2 products

Jean-Paul Huot, ESA/ESTEC

Documentation status for 3rd reprocessing

MERIS level 1 and Level 2 DPMs

RMD

ATBDs (incomplete)

Where?: Google!

Outline of strategy followed after 2d reprocessing. Phase 1:

-calibration verification and adjustment (see vicarious adjustment ATBD)

-Validation of marine reflectances not too close to the coast (= when ICOL not needed)

Tool: MERMAID with marine reflectance matchups

Issues encountered during Phase 1:

Necessity to realign marine reflectances provided by PI's with MERIS level 2 definition to avoid comparing apples and oranges (implemented in MERMAID)

Necessity to perform band-shift corrections for OC-AERONET data (implemented in MERMAID)

Necessity to take polarization into account in computing the sky dome reflection for above-water radiometry to ensure consistency with MERIS reflectance definition (being implemented in MERMAID)

Other issues encountered during Phase 1:

Absence of cheap convenient calibration facilities in Europe

Poor tilt corrections for irradiance sensors

Straylight issues for spectrometers

Instability of TRIOS irradiance sensor calibration

From OC4Me

$$dAPI1/API1 = (-3.63 + 12.5r - 16.5 r^2 + 7r^3)log_{10}dr$$

$$r = log_{10}[max(R_{443}/R_{560}, R_{490}/R_{560}, R_{510}/R_{560})]$$

log10dr can be estimated at about 0.01, which is compatible with MERMAID findings

In plain words there is a 98% probability that 0.5AP1< Chla_tot < 2AP1,

To be compared to

API1 (mg m ⁻³)	dAPI1/API1
0.03	0.5
0.2	0.05
20.	0.02

Conclusion of Phase 1

Optical measurements protocols document finalized

Vicarious adjustments for the NIR and VIS documented

Accuracy of reflectances in the visible on target (<10%)

Uncertainties in API1 definition larger than error propagation in OC4ME.

Marine reflectances at 665 nm underestimated in coastal sites. [NB define coastal ©]

Phase 2: Sanity checks on Case2R NN Inversion.

Inversion is in terms of IOPs. According to RMD the three IOPs used in the bio-optical model are:

- -Total scattering at 442 nm, assuming a ratio of backscattering to scattering of 0.02 and a slope of -0.4 +white scatterer to model whitecaps
- -Total pigment absorption at 442 nm, indexing a series of 212 spectra from the North Sea and Skagerrak
- Yellow substance and bleached sediment absorption at 442 nm

Easter Island 0.5/12/2003 AP1

Easter island 05/12/2011 Chl2

Phase 2: Validation strategies for concentrations (ongoing)

- Comparison of MERMAID reflectances with NN reflectances in ODESA
- -Inversion of reflectances into concentrations using NN trained on local bio-optical properties and comparison with MERIS images (Davide)
- -Match-up database for concentrations: MERMAID upgrades (Chla tot, Chla, TSM, IOPs, ... Kathryn)
- -Comparison with matchups from BioMap (JRC?)

First conclusions of Phase 2

Chl2 concentrations saturate at 0.04 in oligotrophic waters

No quality flags for Case2 NN activated

Case2R NN behaviour in the glint problematic

Good agreement with BPAC in case2_S waters

No attempt to solve adjacency effects in Level2

Issues encountered during phase 2

- Normalization of reflectances into match-up geometry (under evaluation in MERMAID). Easier that normalization of matchups to nadir view.
- Poor documentation of bioptical model for NN case2R
- Poor understanding of what Level 2 products are, leading to comparisons against nature.

Chla_tot measured by HPLC = Chla_tot measured by spectrophotometry = API1

Chla_only measured by HPLC = Chl2

Protocols => Chla_tot_HPLC_NIVA

not equal to Chla_tot_HPLC_JRC

(see Kai & Elisabetta)

Chla_ fluorometry not acceptable for matchups