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1 Introduction

The GOCE satellites carries a gravity gradiometer, consisting of six accelerometers, and three
star trackers as part of the payload. The gravity gradients are calculated from the measurements
of these instruments. In the remainder of this section, we provide a high-level description of
the processing, whereas more details are provided in the following sections.

1.1 Purpose of this document

The purpose of this document is to describe the processing scheme and algorithms in such
detail, that it is possible to implement the GOCE Level 1b processing and arrive at the same
results within numerical precision. It forms the fundamental basis for the GOCE Level 1b
reprocessing performed in the year 2018, in the sense that the reprocessed gravity gradients
and attitude quaternions were calculated following the instruction in this document.

1.2 How to derive gravity gradients from accelerations

A perfect accelerometer onboard a satellite measures the acceleration

ai = −(V −Ω2 − Ω̇)ri + d, (1)

where i is the identifier of the accelerometer, ri is the vector from the satellite’s centre of mass
to the proof mass centre of the i-th accelerometer, V contains the gravity gradients, Ω2ri are
centrifugal accelerations, Ω̇ri are Euler accelerations, and d are non-gravitational accelerations.
The matrices V , Ω̇ and Ω2 are defined as

V =

Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz

 , (2)

Ω̇ =

 0 −ω̇z ω̇y

ω̇z 0 −ω̇x
−ω̇y ω̇x 0

 (3)

and

Ω2 =

−ω2
y − ω2

z ωxωy ωxωz

ωxωy −ω2
x − ω2

z ωyωz

ωxωz ωyωz −ω2
x − ω2

y

 , (4)
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respectively. In order to extract the gravity gradients from the accelerations ai, we build the
following sums and differences. First, we calculate common mode accelerations

ac,ij =
1

2
(ai + aj) = d (5)

and differential mode accelerations

ad,ij =
1

2
(ai − aj) = −(V −Ω2 − Ω̇)rdij (6)

where the differential accelerometer positions rdij are defined in the same way as the differential
mode accelerations, i.e.

rd,ij =
1

2
(ri − rj). (7)

The non-gravitational acceleration d is separated in this way. Next, we define the matrices

Ad =
[
ad14 ad25 ad36

]
(8)

and

Rd =
[
rd14 rd25 rd36

]
=

Lx 0 0

0 Ly 0

0 0 Lz

 , (9)

where Lx, Ly and Lz are the length of the gradiometer arms. We use the matrices to calculate

AdR
−1
d + (AdR

−1
d )T = −2(V −Ω2) (10)

and

AdR
−1
d − (AdR

−1
d )T = 2Ω̇. (11)

This step separated the Euler acceleration from the gravity gradient. The last task is to
determine the centrifugal acceleration in order to find the gravity gradient. For this purpose
we combine the angular accelerations Ω̇ measured by the gradiometer with the star tracker
attitude in order to find the angular rates Ω. Once the angular acceleration is calculated, we
can also calculate the term Ω2.

1.3 Level 1b processing scheme

The GOCE Level 1b data reprocessing is illustrated in Fig. 1, where each red box represents an
algorithm that is described in detail in the remainder of this document. Here, we provide only
a brief description of the algorithm including its significance in the larger processing scheme
and key changes in comparison to the original processing.
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EGG calibration (shaking mode) A so-called satellite shaking procedure was executed ap-
proximately every two months and lasted 24 hours each time. The data collected during
a satellite shaking was used to determine the inverse calibration matrices that were used
in the original processing. In the reprocessing, these inverse calibration matrices are also
applied in order to arrive at pre-calibrated acceleration data. This step is important for
the EGG calibration algorithm, which would fail when nominal (uncalibrated) accelera-
tion data were used as input. The main reason is the that the gradiometer angular rates
calculated from nominal acceleration data are affected by large errors.

EGG outlier detection and removal The acceleration data is occasionally affected by gross
outliers, which are potentially caused by micro-vibrations onboard the GOCE satellite.
These outliers need to be identified and removed from the acceleration data in order to
prevent them from entering the calculation of the gradiometer angular rates. The latter
includes an integration of the acceleration data that would transform the gross outlier
into a step function. The step function would then be high-pass filtered in the angular
rate reconstruction, which ”smears out” the effect of the gross outlier, making it difficult
to remove it from the gravity gradient data.

EGG calibration (science mode) A detailed comparison to gravity gradients calculated
from a GRACE gravity field model revealed that the measured GOCE gravity gradi-
ents are affected by small perturbations caused by imperfect inverse calibration matrices
determined from the satellite shakings. In addition, it was found that an unmodeled
quadratic factor was causing perturbations in the gravity gradient Vyy predominantly in
the regions around the goemagnetic poles. The purpose of the gradiometer calibration in
the so-called science mode, a fight operation mode that ensures a ”quiet” environment
for the gradiometer, is to correct for the imperfections in the inverse calibration matrices
and the quadratic factors.

STR preprocessing The star tracker attitude and CCD temperature data are available at
different sampling rates and epochs than the gradiometer data. The star tracker prepro-
cessing resamples the star tracker attitude and CCD temperature data to the epochs of
the gradiometer data.

STR combination The star tracker combination combines the attitude data from all available
star trackers into a single attitude quaternion. The addition to the original star tracker
combination is the correction of relative, temperature-dependent star tracker attitude
biases.

STR misalignment correction As in the original L1b processing, the small misalignments
between the star tracker assembly and the gradiometer are corrected in this process-
ing step. The misalignments used for correction are however different ones, which are
consistent with the inverse calibration matrices used in the science mode gradiometer
calibration.

Angular rate and acceleration reconstruction The algorithm for the angular rate and
acceleration reconstruction remains the same to a large extend, where the main difference
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is the use of different relative weights for the gradiometer and star tracker angular rates.
A small addition to the algorithm avoids the edge effects due to the filtering, which is
part of the angular rate reconstruction.

Attitude reconstruction The attitude reconstruction is a completely new algorithm. In
the original algorithm, a single star tracker quaternion was integrated over more than
one orbit using the reconstructed angular rates. The resulting time series of integrated
star tracker quaternions was merged with the attitude quaternions from the star tracker
combination by applying a high-pass filter to the first and a complementary low-pass
filter to the latter. The weak point of this approach is the propagation of the attitude
error of the star tracker quaternion used to initialise the integration. Even in case of
error-free angular rates, the error in the integrated quaternion grows proportional to the
distance from the initial quaternion. This error propagation is taken into account in
the new algorithm, where the reconstructed attitude quaternion is estimated by fitting
the reconstructed angular rates to differences of the quaternions from the star tracker
combination.

Gravity gradient calculation The calculation of the gravity gradients remains the same.

Table 1: GOCE L1b algorithms referenced within processing scheme

Name of algorithm (cf. Fig. 1) Algorithm listing

EGG calibration (shaking mode) Algorithm 8

EGG outlier detection and removal Algorithm 10

EGG calibration (science mode) Algorithm 9

STR preprocessing Algorithm 5

STR combination Algorithm 6

STR misalignment correction Algorithm 7

Angular rate and acceleration reconstruction Algorithms 13, 14

Attitude reconstruction Algorithm 15

Gravity gradient calculation Algorithm 16
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Figure 1: Flowchart for L1b data reprocessing and calibration.
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2 Basic processing elements

2.1 Precision of epochs and time differences

The algorithms described in this document include often the calculation of time differences
between epochs. In order to reproduce the GOCE gravity gradients with a precision better
than 1 mE, the time differences require a precision of at least nano-second level. In order to
achieve that precision for time differences, the epochs need to be stored with at least the same
precision.

For GOCE mission data, the epochs are specified typically as GPS seconds, which are dur-
ing mission lifetime in the order of 1010 seconds. Thus, representing the epochs with double
precision is insufficient because then the precision of the epochs would be 1010 × 2−52 ≈ 10−6

seconds, i.e. at micro-second level. There are many ways of increasing the precision of the
epochs. One way is using two double precision variables for representing the epochs tn, where
the first double precision variable represents the integer part tintn of the GPS second and the
other double precision variable represents the sub-second part tsubn of the GPS second. The
integer and sub-second part of the GPS second are obtained by

tintn = floor(tn) (12)

and
tsubn = tn − floor(tn), (13)

respectively, such that
tn = tintn + tsubn . (14)

The time difference between two arbitrary epochs tk and tn can then be calculated with the
required precision by

tk − tn = round(tintk − tintn ) + tsubk − tsubn . (15)

When an already existing software routine is used to perform a calculation, it may not be
possible to apply Eq. (15) strictly. For example, Matlab’s interp1 function accepts only one
double variable for the epochs tn. However, in many cases the software routine does not perform
calculations on the epochs tn directly, but only on time differences between epochs. In such
cases, the time differences ∆tn between all epochs and the first epoch,

∆tn = round(tintn − tint1 ) + tsubn − tsub1 , (16)

can replace the epochs tn as input variable to the existing software routine. If the input data
to the routine does not span more than 90 days, the precision of the time differences ∆tn is
90×86400×2−52 ≈ 10−9 seconds, i.e. the precision of ∆tn is at the required nano-second level.

In all algorithms described in this document, either Eq. (15) or Eq. (16) shall be used to
calculate time differences, noting that we will not explicitly refer to these equations.
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2.2 Interpolation

The method used for all interpolations is cubic spline interpolation with the following conditions:

• The cubic splines interpolate the data points.

• The first and second derivative is a continuous function.

• The third derivative is continuous in the second data point as well as the second last data
point (”not-a-knot” condition).

This is known as cubic spline interpolation with ”not-a-knot” conditions, which is Matlab’s
default method of spline interpolation of the interp1 function. In this document, we denote
this interpolation by

xinterp = interpolate(t,x, tinterp) (17)

where vector t contains the original epochs, vector x contains the original data points, vector
tint contains the epochs to which we interpolate, and vector xint contains the interpolated data
points.

2.3 Numerical integration

For numerical integration of a time series, whose values x =
[
x1 . . . xN

]
are given at epochs

t =
[
t1 . . . tN

]
, our approach is interpolating x using cubic spline interpolation with ”not-a-

knot” conditions and then integrating the splines. Since the software available to us does not
support analytical integration of the splines, we first upsample the time series and then apply
trapezoidal integration on the upsampled time series. We denote the epochs and values of the
upsampled time series by tup and xup, respectively. We specify the increase of the sampling
rate by an integer factor K, such that between each two epochs tn and tn+1 we insert K−1 new
epochs that are equally spaced between tn and tn+1. A typical value is K = 20 for processing
described in this document. Then, we interpolate the time series x to the epochs tup and reduce
the mean from the resulting upsampled time series xup in order to keep the accumulation of
rounding errors low in the following step, which is the trapezoidal integration of xup. Finally,
we decimate the integrated time series xup,int to the original epochs to obtain the integrated
time series xint. All of these steps are detailed in Algorithm 1 for numerical integration of a
time series. For convenience, we denote the numerical integration by

xint = integrate(t,x, K). (18)
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Inputs Symbol Unit

Epochs t Time unit, e.g. GPS seconds

Values x Any unit

Upsampling factor K unitless

Outputs Symbol Unit

Integrated time series xint Any unit multiplied by time unit

Table 2: List of inputs and outputs of numerical integration algorithm

Algorithm 1 Numerical integration of a time series

1: xint = zeros(N, 1)
2: tup = zeros((N − 1)K + 1, 1)
3: xint,up = zeros((N − 1)K + 1, 1)
4: for n← 1, N − 1 do
5: for k ← 0, K − 1 do
6: tup1+(n−1)K+k = tn + k

K
(tn+1 − tn)

7: end for
8: end for
9: tup(N−1)K+1 = tN
10: xup = interpolate(t,x, tup)
11: xup = xup −mean(xup)
12: for n← 2, (N − 1)K + 1 do
13: xint,upn = xint,upn−1 + (xupn + xupn−1)(tupn − t

up
n−1)/2

14: end for
15: for n← 1, N do
16: xintn = xint,up1+(n−1)K

17: end for

2.4 Numerical differentiation

For calculating the first time derivative of a time series, whose values x =
[
x1 . . . xN

]
are

given at epochs t =
[
t1 . . . tN

]
, we interpolate x to the epochs t − ∆t and t + ∆t using

cubic spline interpolation with ”not-a-knot” conditions, where ∆t is small in comparison to
the time difference tn+1 − tn. For processing described in this document, typical values are
tn+1− tn = 1 second and ∆t = 1 millisecond. The resulting interpolated values are denoted by
x−∆t and x+∆t, respectively. When using Matlab’s interp1 function for the calculation of x−∆t

and x+∆t, extrapolation has to be switched on. Then, we obtain the first time derivative ẋ by
calculating

ẋ =
x+∆t − x−∆t

2∆t
. (19)
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The calculation is summarised in Algorithm 2 for numerical differentiation of a time series. For
convenience, we denote the numerical differentiation by

ẋ = differentiate(t,x,∆t). (20)

Inputs Symbol Unit

Epochs t Time unit, e.g. GPS seconds

Values x Any unit

Upsampling factor ∆t unitless

Outputs Symbol Unit

Integrated time series ẋ Any unit divided by time unit

Table 3: List of inputs and outputs of numerical differentiation algorithm

Algorithm 2 Numerical differentiation of a time series

1: x−∆t = interpolate(t,x, t−∆t)
2: x+∆t = interpolate(t,x, t+ ∆t)

3: ẋ = x+∆t−x−∆t

2∆t
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3 Convention for rotation matrices, quaternions, and an-

gular rates

We use the conventions for quaternions, rotations and angular rates as described in Groves
[2013], which we repeat here for convenience. A rotation is defined by

xB = RB
Ax

A (21)

where xA is a vector in the A-frame, xB is a vector in the B-frame, and RB
A is the rotation

matrix that rotates from the A-frame to the B-frame. One way to represent a rotation matrix
by a sequence of elementary rotations is

RB
A =

1 0 0

0 cosφBA sinφBA
0 − sinφBA cosφBA


cos θBA 0 − sin θBA

0 1 0

sin θBA 0 cos θBA


 cosψBA sinψBA 0

− sinψBA cosψBA 0

0 0 1

 . (22)

The frame transformation for the gravity gradient tensor V reads

V B = RB
AV

A(RB
A)T = RB

AV
ARA

B. (23)

In case the angles of rotation φBA, θBA and ψBA are small, we can approximate

RB
A =

 1 ψBA −θBA
−ψBA 1 φBA
θBA −φBA 1

 . (24)

The angular rate vector is denoted by ωCB,A and describes the rate of rotation of the A-frame
axes with respect to the B-frame axes, resolved about the C-frame axes. The skew symmetric
matrix

ΩC
B,A =

 0 −ωCB,A,z ωCB,A,y
ωCB,A,z 0 −ωCB,A,x
−ωCB,A,y ωCB,A,x 0

 (25)

is also commonly used for the angular rate vector. The first time derivative of the rotation
matrix is related to the angular rates by

ṘB
A = −ΩB

A,BR
B
A (26)

where we assume that B-frame axes are rotating with respect to the stationary A-frame axes.
In the context of the GOCE mission, the GRF is thus equivalent to the B-frame and the IRF
is equivalent to the A-frame.

Page 17/63

GOCE Level 1B Gravity Gradient Processing Algorithms

Issue Date 27/08/2018 Ref ESA-EOPSM-GOCE-TN-3397



ESA UNCLASSIFIED - Releasable to the Public

In some situation it is more practical to work with quaternions instead of rotation matrices. A
quaternion that describes the same rotation than RB

A is defined as

qBA =
[
qBA,0 qBA,1 qBA,2 qBA,3

]T
(27)

where qBA,0 is the real element of the quaternion and qBA,1, qBA,2 and qBA,3 are imaginary elements
of the quaternions. In the context of the GOCE mission, qBA,0 is labelled qBA,4. The rotation
matrix and the quaternion are related by

RB
A =

qBA,0
2
+ qBA,1

2 − qBA,2
2 − qBA,3

2
2(qBA,1q

B
A,2 + qBA,3q

B
A,0) 2(qBA,1q

B
A,3 − qBA,2q

B
A,0)

2(qBA,1q
B
A,2 − qBA,3q

B
A,0) qBA,0

2 − qBA,1
2
+ qBA,2

2 − qBA,3
2

2(qBA,2q
B
A,3 + qBA,1q

B
A,0)

2(qBA,1q
B
A,3 + qBA,2q

B
A,0) 2(qBA,2q

B
A,3 − qBA,1q

B
A,0) qBA,0

2 − qBA,1
2 − qBA,2

2
+ qBA,3

2

 . (28)

The sequence of rotations from the A-frame to the C-frame via the B-frame can be performed
in terms of rotation matrix multiplications

RC
A = RC

BR
B
A (29)

or equivalently in terms of quaternion multiplications

qCA = qBAq
C
B , (30)

noting that the sequence of quaternion multiplications is reversed compared to that of rotation
matrix multiplications.

For small rotation angles, we can approximate the quaternion qBA by

qBA =
[
1 φBA/2 θBA/2 ψBA/2

]T
. (31)

For small time intervals ∆t, we can relate the small rotation angles to the angular rates by

qBA(t+ ∆t) = qBA(t)q
B(t+∆t)
B(t) (32)

where

q
B(t+∆t)
B(t) =


1

φ
B(t+∆t)
B(t) /2

θ
B(t+∆t)
B(t) /2

ψ
B(t+∆t)
B(t) /2

 =


1∫ t+∆t

t
ωBA,B,xdt/2∫ t+∆t

t
ωBA,B,ydt/2∫ t+∆t

t
ωBA,B,zdt/2

 . (33)

Equation (26) expressed in terms of quaternions reads

q̇BA = qBAW
B
A,B (34)

where the product WB
A,Bq

B
A is a quaternion multiplication and

WB
A,B =

[
0 ωBA,B,x/2 ωBA,B,y/2 ωBA,B,z/2

]T
(35)

is a vector that contains the angular rates. Note that the different sign in Eq. (34) with respect
to Eq. (26) results from the different signs in Eq. (24) and Eq. (25).
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Algorithm 3 Converting rotation matrices to quaternions

1: t = R11 +R22 +R33

2: if t > 0 then
3: r =

√
1 + t

4: s = 0.5/r
5: q0 = 0.5r
6: q1 = (R32 −R23)s
7: q2 = (R13 −R31)s
8: q3 = (R21 −R12)s
9: else if R11 > R22 and R11 > R33 then
10: r =

√
1 +R11 −R22 −R33

11: s = 0.5/r
12: q0 = (R32 −R23)s
13: q1 = 0.5r
14: q2 = (R12 +R21)s
15: q3 = (R31 +R13)s
16: else if R22 > R11 and R22 > R33 then
17: r =

√
1 +R22 −R11 −R33

18: s = 0.5/r
19: q0 = (R13 −R31)s
20: q1 = (R21 +R12)s
21: q2 = 0.5r
22: q3 = (R32 +R23)s
23: else . R33 > R11 and R33 > R22

24: r =
√

1 +R33 −R11 −R22

25: s = 0.5/r
26: q0 = (R21 −R12)s
27: q1 = (R31 +R13)s
28: q2 = (R32 +R23)s
29: q3 = 0.5r
30: end if
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4 Star tracker data processing

4.1 Star tracker data preprocessing

On board the GOCE satellite are three star trackers, each providing its orientation with respect
to the international celestial reference frame (IRF). The orientation is provided in form of an
attitude quaternion qSRFi

IRF , where i ∈ {1, 2, 3} indicates the star tracker. The star trackers also
provide various flags that give information on the tracking status. In the first step of the star
tracker data preprocessing, we use the validity flag fV ALi

and the big-bright-object flag fBBOi
,

which indicate whether the star tracker is providing a valid attitude and whether a big and
bright object is within the field-of-view, respectively. We discard all attitude quaternions that
are flagged invalid, i.e. fV ALi

= 0 and for which a big-bright-object is detected, i.e. fBBOi
= 1.

Since the measurements of the star trackers are not synchronised with the gradiometer measure-
ments, we resample all star tracker data to the measurement epochs of the gradiometer. The
first step is loading the star tracker epochs, quaternions and flags from the STR VC3 1B and
STR VC3 1B files and star tracker CCD temperatures from the AUX NOM 1B files, followed
by sorting all loaded data into individual variables for each star tracker. Then, we amend for
each star tracker all quaternion sign flips between subsequent epochs using Algorithm 4, noting
that qSRFi

IRF and −qSRFi
IRF describe the same attitude. For the resampling we select all quaternions

in a time window [tG,n −∆tq, tG,n + ∆tq] centred around the gradiometer epochs tG,n and ap-
proximate them with a quadratic function, provided that we have at least three quaternions
within the time window and at least one quaternion on each side of tG,n. We use the same
approach to resample the star tracker CCD temperatures to the gradiometer epochs, with the
differences that we use a larger time window [tG,n −∆tT , tG,n + ∆tT ] and that we approximate
the temperatures by their mean value within the time window. These processing steps consti-
tute the star tracker preprocessing, which is detailed in Algorithm 5. Typical values for the
time windows are ∆tq = 1.75 seconds, i.e. up to 7 star tracker epochs due to the sampling rate
of 2 Hz for quaternions, and ∆tT = 300 seconds, i.e. up to 38 epochs due to the sampling rate
of 1/16 Hz for temperatures. Further, it is noted that the resolution for the temperatures is
limited to roughly 0.5◦C.

4.2 Star tracker data combination

We use the approach of Romans [2003] for the combination of the attitude quaternions. It is
based on a least squares adjustment of the star tracker quaternions, in which the pointing of the
star tracker bore sight is assumed to be 10 times more accurate compared to the rotation around
the bore sight. It requires knowledge of the orientation of the star trackers in the common
reference frame (CRF), which is aligned with the satellite’s body axes. That orientation is a
available in form the rotation matrices RCRF

SRF1
, RCRF

SRF2
and RCRF

SRF3
defined in Eqs. (36–38). Our
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addition to the approach of Romans [2003] is the correction of relative biases between the star
trackers, which are modelled as linear functions of the temperature as defined in Eqs. (39–44).
Algorithm 6 shows all processing steps of the star tracker combination in detail.

RCRF
SRF1

=

 0.999991953964000 −0.003855453067860 0.001107921250810

−0.002875276132160 −0.496285685373000 0.868154508875000

−0.002797283507320 −0.868150709252000 −0.496292777733000

 (36)

RCRF
SRF2

=

0.999868439135000 0.015726793513000 −0.003971446564830

0.016149312081100 −0.942268716879000 0.334468032720000

0.001517939828470 −0.334488165946000 −0.942398728087000

 (37)

RCRF
SRF3

=

 0.011846242780200 −0.769183928773000 0.638917639645000

−0.491411293086000 0.551999304112000 0.673655482637000

−0.870847063243000 −0.321951629871000 −0.371446551289000

 (38)

bCRFS1
(TS1) = bCRFC1

+ TS1 b
CRF
T1

(39)

bCRFC1
= 10−3

 0.116219900793661

−0.134723547186391

−0.029472128350279

 , bCRFT1
= 10−5

 0.278591682091328

−0.118889821498250

−0.140330884420176

 (40)

bCRFS2
(TS2) = bCRFC2

+ TS2 b
CRF
T2

(41)

bCRFC2
= 10−3

 0.087909010253279

−0.223645453432216

−0.007718724727271

 , bCRFT2
= 10−5

 0.046609082258701

0.226425836947881

−0.096374884840557

 (42)

bCRFS3
(TS3) = bCRFC3

+ TS3 b
CRF
T3

(43)

bCRFC3
= 10−3

 0.111289309287413

−0.147455472014728

0.021704225770305

 , bCRFT3
= 10−5

 0.053953847437714

−0.064274246885287

0.379499278972736

 (44)
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Inputs Symbol Unit Contents

Flags f unitless 0 = invalid, 1 = valid

Quaternions q unitless Quaternions with sign flips

Outputs Symbol Unit Contents

Quaternions q unitless Quaternions without sign flips

Table 4: List of inputs and outputs of algorithm for making quaternions continuous

Algorithm 4 Making quaternions continuous

1: for n← 2, N do
2: if fn == 0 then . No valid attitude available
3: qn = qn−1

4: else if qTn qn−1 < 0 then
5: qn = −qn
6: end if
7: end for
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Inputs Symbol Unit Contents

Epochs tG GPS seconds Epochs of gradiometer

Epochs tS1 , tS2 , tS3 GPS seconds
Epochs of attitude of three star
trackers

Attitude
quaternions

qIRFSRF1
, qIRFSRF2

, qIRFSRF3
unitless

Orientation of star tracker in
IRF

Flags fBBO1 , fBBO2 , fBBO3 unitless

Big-bright-object (BBO) flag of
star trackers: 1 = BBO in field
of view, 0 = no BBO in field of
view

Flags fV AL1 , fV AL2 , fV AL3 unitless
Valid flag of star trackers: 1 =
valid attitude, 0 = invalid atti-
tude

Epochs tT1 , tT2 , tT3 GPS seconds
Epochs of temperature of three
star trackers

Temperatures TS1 , TS2 , TS3
oC

Temperature of three star
trackers

Half window
width

∆tq seconds
Window width for selection of
quaternions

Half window
width

∆tT seconds
Window width for selection of
temperatures

Outputs Symbol Unit Contents

Attitude
quaternions

qIRF,resSRF1
, qIRF,resSRF1

, qIRF,resSRF1
unitless

Orientation of SRF1, SRF2,
SRF3 wrt. IRF resampled to
gradiometer epochs

Temperatures T res
S1

, T res
S2

, T res
S3

oC
Temperature of three star
trackers resampled to gra-
diometer epochs

Flags f resS1
, f resS2

, f resS3
unitless

Flags of resampled star tracker
data: 1 = usable, 0 = not us-
able

Table 5: List of inputs and outputs of star tracker preprocessing algorithm
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Algorithm 5 Resampling of star tracker quaternions to epochs of gradiometer (part 1)

1: for i⇐ 1, 3 do . Loop over three star trackers
2: Remove all epochs from variables tSi

, qIRFSRFi
and fV AL,i for which fBBO,i = 1

3: Remove all epochs from variables tSi
and qIRFSRFi

for which fV AL,i = 0

4: qIRF,resSRF1
= zeros(length(tG), 4)

5: if empty(tSi
) then . If no quaternions are available from this star tracker,

6: f resSi
= zeros(size(tG)) . set flag of resampled star tracker data to not usable

7: else
8: f resSi

= ones(size(tG)) . Initialise flags of resampled star tracker data
9: k = 1
10: m = 1
11: for n← 1, length(tG) do
12: while k < length(tSi

) and tSi,k < tG,n −∆tq do
13: k = k + 1
14: end while
15: while m < length(tSi

) and tSi,m+1 < tG,n + ∆tq do
16: m = m+ 1
17: end while
18: if m− k ≥ 2 and tSi,k < tG,n and tSi,m > tG,n then

19: τ = 1
∆tq

 tSi,k − tG,n
...

tSi,m − tG,n


20: A =

[
τ 0 τ 1 τ 2

]
21: y =

 (qIRFSRFi,k
)T

...

(qIRFSRFi,m
)T


22: x = (ATA)−1ATy

23: qIRF,resSRFi,n
=
[
x1,1 · · · x1,4

]T
24: else
25: f resSi,n

= 0
26: end if
27: end for
28: end if
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Algorithm 5 Resampling of star tracker quaternions to epochs of gradiometer (part 2)

29: TSi
= zeros(length(tG), 1)

30: if empty(tTi) then . If no temperatures are available from this star tracker,
31: f resSi

= zeros(size(tG)) . set flag of resampled star tracker data to not usable
32: else
33: k = 1
34: m = 1
35: for n← 1, length(tG) do
36: while k < length(tTi) and tTi,k < tG,n −∆tT do
37: k = k + 1
38: end while
39: while m < length(tTi) and tTi,m+1 < tG,n + ∆tT do
40: m = m+ 1
41: end while
42: if m− k ≥ 2 and tTi,k < tG,n and tTi,m > tG,n then

43: T resSi,n
= mean(

[
TSi,k · · · TSi,m

]
)

44: else
45: f resSi,n

= 0
46: end if
47: end for
48: end if
49: end for
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Inputs Symbol Unit Contents Source algorithm

Attitude
quaternions

qIRF,resSRF1
, qIRF,resSRF2

, qIRF,resSRF3
unitless

Resampled orien-
tation of SRF1,
SRF2, SRF3 wrt.
IRF

Star tracker pre-
processing

Flag f resS1,n
, f resS2,n

, f resS3,n
unitless

Flag of resam-
pled star tracker
quaternion: 1 =
valid, 0 = invalid

Star tracker pre-
processing

Temperature T res
S1,n

, T res
S2,n

, T res
S3,n

oC
Resampled tem-
perature of star
trackers

Star tracker pre-
processing

Constants Symbol Unit Contents Source

Biases bCRFS1
, bCRFS2

, bCRFS3
unitless

Star tracker atti-
tude bias in CRF

Star tracker cali-
bration

Rotation RCRF
SRF1

, RCRF
SRF2

, RCRF
SRF3

unitless
Star tracker orien-
tation in CRF

Outputs Symbol Unit Contents

Attitude
quaternions

qIRFCRF unitless
Orientation of
CRF wrt. IRF

Flags f unitless
1 = valid, 0 = in-
valid

Square-sum of
residuals

Ω rad2 Square-sum of
residuals

Cofactor ma-
trices

Q1, Q2, Q3, Q12, Q13,
Q23, Q123

unitless Cofactor matrices

Table 6: List of inputs and outputs of star tracker combination algorithm
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Algorithm 6 Star tracker combination (part 1)

1: P SRF =

1 0 0

0 1 0

0 0 1
102

 . attitude around boresight axis 10 times worse than others

2: P CRF
1 = RCRF

SRF1
∗ P SRF ∗ (RCRF

SRF1
)T

3: P CRF
2 = RCRF

SRF2
∗ P SRF ∗ (RCRF

SRF2
)T

4: P CRF
3 = RCRF

SRF3
∗ P SRF ∗ (RCRF

SRF3
)T

5: Convert RSRF1
CRF to qSRF1

CRF using Algorithm 3
6: Convert RSRF2

CRF to qSRF2
CRF using Algorithm 3

7: Convert RSRF3
CRF to qSRF3

CRF using Algorithm 3
8: eCRF1 = zeros(N, 3)
9: eCRF2 = zeros(N, 3)
10: eCRF3 = zeros(N, 3)
11: qIRFCRF = zeros(N, 4)
12: for n← 1, N do
13: bCRFS1,n

= bCRFC1
+ T resS1,n

bCRFT1

14: bCRFS2,n
= bCRFC2

+ T resS2,n
bCRFT2

15: bCRFS3,n
= bCRFC3

+ T resS3,n
bCRFT3

16: bSRF1
S1,n

= RSRF1
CRF b

CRF
S1,n

17: bSRF2
S2,n

= RSRF2
CRF b

CRF
S2,n

18: bSRF3
S3,n

= RSRF3
CRF b

CRF
S3,n

19: q12,n = (qIRF,resSRF1,n
qSRF1
CRF )∗(qIRF,resSRF2,n

qSRF2
CRF ) . quaternion multiplication/conjugation

20: q13,n = (qIRF,resSRF1,n
qSRF1
CRF )∗(qIRF,resSRF3,n

qSRF3
CRF ) . quaternion multiplication/conjugation

21: q23,n = (qIRF,resSRF2,n
qSRF2
CRF )∗(qIRF,resSRF3,n

qSRF3
CRF ) . quaternion multiplication/conjugation

22: d12,n = 2 ∗ sign q12,n,0

q12,n,1

q12,n,2

q12,n,3

+ bCRFS1,n
− bCRFS2,n

23: d13,n = 2 ∗ sign q13,n,0

q13,n,1

q13,n,2

q13,n,3

+ bCRFS1,n
− bCRFS3,n

24: d23,n = 2 ∗ sign q23,n,0

q23,n,1

q23,n,2

q23,n,3

+ bCRFS2,n
− bCRFS3,n

25: end for
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Algorithm 6 Star tracker combination (part 2)

26: for n← 1, N do
27: if f resS1,n

= 1 and f res2,n = 1 and f res3,n = 0 then
28: eCRF1,n = −(P CRF

1 + P CRF
2 )−1P CRF

2 d12,n

29: eCRF2,n = eCRF1,n + d12,n

30: end if
31: if f res1,n = 1 and f res2,n = 0 and f res3,n = 1 then
32: eCRF1,n = −(P CRF

1 + P CRF
3 )−1P CRF

3 d13,n

33: eCRF3,n = eCRF1,n + d13,n

34: end if
35: if f res1,n = 0 and f res2,n = 1 and f res3,n = 1 then
36: eCRF2,n = −(P CRF

2 + P CRF
3 )−1P CRF

3 d23,n

37: eCRF3,n = eCRF2,n + d23,n

38: end if
39: if f res1,n = 1 and f res2,n = 1 and f res3,n = 1 then
40: eCRF1,n = −(P CRF

1 + P CRF
2 + P CRF

3 )−1(P CRF
2 d12,n + P CRF

3 d13,n)
41: eCRF2,n = eCRF1,n + d12,n

42: eCRF3,n = eCRF1,n + d13,n

43: end if
44: if f resS1,n

= 1 or f resS2,n
= 1 or f resS3,n

= 1 then . set flag of combined quaternion
45: fn = 1
46: else
47: fn = 0
48: end if
49: if f resS1,n

= 1 then

50: qIRFCRF,n = (qIRFSRF1,n

[
1

−(eSRF1
1,n + bSRF1

1,n )/2

]
)qSRF1
CRF . quat. multiplications

51: end if
52: if f resS2,n

= 1 then

53: qIRFCRF,n = (qIRFSRF2,n

[
1

−(eSRF2
2,n + bSRF2

2,n )/2

]
)qSRF2
CRF . quat. multiplications

54: end if
55: if f resS3,n

= 1 then

56: qIRFCRF,n = (qIRFSRF3,n

[
1

−(eSRF3
3,n + bSRF3

3,n )/2

]
)qSRF3
CRF . quat. multiplications

57: end if

58: qIRFCRF,n =
qIRF
CRF,n

|qIRF
CRF,n|

. normalize quaternion

59: end for
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Algorithm 6 Star tracker combination (part 3, optional)

60: RSRF = chol(P SRF ) . Cholesky factorization
61: Ω = 0 . square-sum of residuals
62: for n← 1, N do
63: eSRF1

1,n = RSRF1
CRF e

CRF
1,n

64: eSRF2
2,n = RSRF2

CRF e
CRF
2,n

65: eSRF3
3,n = RSRF3

CRF e
CRF
3,n

66: Ω = Ω + (RSRFeSRF1
1,n )T (RSRFeSRF1

1,n )

67: Ω = Ω + (RSRFeSRF2
2,n )T (RSRFeSRF2

2,n )

68: Ω = Ω + (RSRFeSRF3
3,n )T (RSRFeSRF3

3,n )
69: end for
70: Q1 = (P CRF

1 )−1 . cofactor matrix
71: Q2 = (P CRF

2 )−1 . cofactor matrix
72: Q3 = (P CRF

3 )−1 . cofactor matrix
73: Q12 = (P CRF

1 + P CRF
2 )−1 . cofactor matrix

74: Q13 = (P CRF
1 + P CRF

3 )−1 . cofactor matrix
75: Q23 = (P CRF

2 + P CRF
3 )−1 . cofactor matrix

76: Q123 = (P CRF
1 + P CRF

2 + P CRF
3 )−1 . cofactor matrix
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5 Adjusting the misalignment between star trackers and

gradiometer

The calibration against the angular rates from the combined star trackers and the gravity field
model yields not only calibration parameters for the gradiometer (inverse calibration matrices
and quadratic factor matrices), but also the misalignment between star trackers and gradiome-
ter. This misalignment needs to be corrected prior to the angular rate reconstruction. The
misalignment parameters are small angles denoted by α, β and γ. They are specified at two
reference epochs ta and tb, between which they have to be linearly interpolated. The misalign-
ment between the star trackers and the gradiometer is taken into account by applying a small
rotation to the combined star sensor quaternion qCRFIRF that connects the inertial reference frame
with the common reference frame of the star trackers.

Inputs Symbol Unit Contents Source algorithm

Epochs ta, tb
GPS
second

Reference epochs for
interpolation

Gradiometer cali-
bration

Attitude quaternions qCRFIRF unitless
Orientation of CRF
wrt. IRF

Star tracker combi-
nation

Epochs t
GPS
second

Epoch of qCRFIRF

Star tracker combi-
nation

Misalignments
αa, βa, γa,
αb, βb, γb

radians
Misalignment between
CRF and GRF at
epochs ta and tb

Gradiometer cali-
bration

Outputs Symbol Unit Contents

Attitude quaternions qGRFIRF unitless
Orientation of GRF
wrt. IRF

Table 7: List of inputs and outputs of algorithm for adjusting the misalignment between star
trackers and gradiometer

Algorithm 7 Adjustment of the misalignment between star trackers and gradiometer

1: for n← 1, N do
2: αn = tb−tn

tb−ta
αa + tn−ta

tb−ta
αb . Linear interpolation of misalignments

3: βn = tb−tn
tb−ta

βa + tn−ta
tb−ta

βb
4: γn = tb−tn

tb−ta
γa + tn−ta

tb−ta
γb

5: qGRFCRF,n =
[
1 −αn/2 −βn/2 −γn/2

]T
/
√

1 + 1
4
(α2

n + β2
n + γ2

n)

6: qGRFIRF,n = qCRFIRF,nq
GRF
CRF,n . Quaternion multiplication

7: end for

Page 31/63

GOCE Level 1B Gravity Gradient Processing Algorithms

Issue Date 27/08/2018 Ref ESA-EOPSM-GOCE-TN-3397



ESA UNCLASSIFIED - Releasable to the Public

Page 32/63

GOCE Level 1B Gravity Gradient Processing Algorithms

Issue Date 27/08/2018 Ref ESA-EOPSM-GOCE-TN-3397



ESA UNCLASSIFIED - Releasable to the Public

6 Accelerometer data processing

6.1 Accelerometer data calibration

The relationship of the measured and true acceleration is defined by the quadratic function

âi = b̂i +Miai +Kia
2
i +Wiω̇ + n̂i (45)

where âi is the measured acceleration, b̂i is the bias of the measured acceleration, Mi is a
calibration matrix for the i-th accelerometer, ai is the true acceleration, Ki is the quadratic
factor matrix,Wi is the angular acceleration coupling matrix, ω̇ is the true angular acceleration,
and n̂i is noise in the measured acceleration. It should be noted that Mi is a general 3 × 3
matrix and Ki is a 3 × 3 diagonal matrix. The elements of Wi depend on the onboard proof
mass control and are defined as

Wi =

0 0 0

ei 0 gi

0 fi 0

 for i ∈ {1, 4}, (46)

Wi =

0 0 gi

0 0 0

ei fi 0

 for i ∈ {2, 5} (47)

and

Wi =

0 fi 0

ei 0 gi

0 0 0

 for i ∈ {3, 6}. (48)

For the square of a vector as in a2
i , we use the convention that the elements of the vector are

squared, i.e.

a2
i =

a2
ix

a2
iy

a2
iz

 . (49)

Differential and common mode acceleration are defined by[
adij

acij

]
=

1

2

[
ai − aj
ai + aj

]
. (50)

When defining the inverse calibration matrix as

Mij = 2

[
Mi +Mj Mi −Mj

Mi −Mj Mi +Mj

]−1

, (51)

Page 33/63

GOCE Level 1B Gravity Gradient Processing Algorithms

Issue Date 27/08/2018 Ref ESA-EOPSM-GOCE-TN-3397



ESA UNCLASSIFIED - Releasable to the Public

we can reformulate Eq. (45) to[
âdij

âcij

]
=

[
b̂dij

b̂cij

]
+M−1

ij

[
adij

acij

]
+

1

2

[
Ki −Kj

Ki Kj

][
a2
i

a2
j

]
+

[
Wdij

Wcij

]
ω̇ +

[
n̂dij

n̂cij

]
, (52)

where all differential and common terms are signified by subscripts d and c, respectively, and
defined analogously to Eq. (50).

A so-called satellite shaking procedure yields a first estimate of the inverse calibration matrix
Mij, which we denote by M̂ij. Applying the first estimate of the inverse calibration matrix to
the measured acceleration yields [

ādij

ācij

]
= M̂ij

[
âdij

âcij

]
, (53)

where ādij and ācij are calibrated differential and common mode acceleration, respectively, of
the first stage of the calibration. We regard ādij and ācij as good approximations of adij and
acij, respectively, which will be refined in the second stage of the calibration.

Inserting Eq. (53) into Eq. (52) gives[
ādij

ācij

]
=

[
b̄dij

b̄cij

]
+M̂ijM

−1
ij

[
adij

acij

]
+

1

2
M̂ij

[
Ki −Kj

Ki Kj

][
a2
i

a2
j

]
+M̂ij

[
Wdij

Wcij

]
ω̇+

[
n̄dij

n̄cij

]
, (54)

where b̄dij, b̄cij, n̄dij, and n̄cij are defined analogously to Eq. (53). In order to proceed, we need
to find approximations for a2

i and a2
j . For this purpose, we assume that quadratic factors and

angular acceleration couplings are small, i.e. Ki ≈ 0, Kj ≈ 0, Wdij ≈ 0 and Wcij ≈ 0, the
inverse calibration matrix estimated in the satellite shaking procedure approximates the true
inverse calibration matrix well, i.e. M̂ij ≈Mij, and that we can neglect the noise terms, i.e.
n̄dij ≈ 0 and n̄cij ≈ 0. With these assumptions, Eq. (54) reduces to[

ādij

ācij

]
=

[
b̄dij

b̄cij

]
+

[
adij

acij

]
, (55)

which leads to [
a2
i

a2
j

]
=

[
(āi − b̄i)2

(āj − b̄j)2

]
=

[
ā2
i

ā2
j

]
− 2

[
āib̄i

āj b̄j

]
+

[
b̄2
i

b̄2
j

]
. (56)

Inserting this result for a2
i and a2

j into Eq. (54) gives[
ādij

ācij

]
=

[
b̄dij

b̄cij

]
+ M̂ijM

−1
ij

[
adij

acij

]

+
1

2
M̂ij

[
Ki −Kj

Ki Kj

]([
ā2
i

ā2
j

]
− 2

[
āib̄i

āj b̄j

]
+

[
b̄2
i

b̄2
j

])
+ M̂ij

[
Wdij

Wcij

]
ω̇ +

[
n̄dij

n̄cij

]
. (57)

Page 34/63

GOCE Level 1B Gravity Gradient Processing Algorithms

Issue Date 27/08/2018 Ref ESA-EOPSM-GOCE-TN-3397



ESA UNCLASSIFIED - Releasable to the Public

In order to simplify the equation, we note that[
Ki −Kj

Ki Kj

][
āib̄i

āj b̄j

]
=

[
Kib̄i −Kj b̄j

Kib̄i Kj b̄j

][
āi

āj

]
(58)

=

[
Kib̄i −Kj b̄j

Kib̄i Kj b̄j

][
ācij + ādij

ācij − ādij

]
(59)

=

[
Kib̄i +Kj b̄j Kib̄i −Kj b̄j

Kib̄i −Kj b̄j Kib̄i +Kj b̄j

][
ādij

ācij

]
, (60)

which leads to[
ādij

ācij

]
=

[
b̄dij

b̄cij

]
+

1

2
M̂ij

[
Ki −Kj

Ki Kj

][
b̄2
i

b̄2
j

]
+ M̂ijM

−1
ij

[
adij

acij

]

− M̂ij

[
Kib̄i +Kj b̄j Kib̄i −Kj b̄j

Kib̄i −Kj b̄j Kib̄i +Kj b̄j

][
ādij

ācij

]

+
1

2
M̂ij

[
Ki −Kj

Ki Kj

][
ā2
i

ā2
j

]
+ M̂ij

[
Wdij

Wcij

]
ω̇ +

[
n̄dij

n̄cij

]
. (61)

We solve this equation for adij and acij, which gives[
adij

acij

]
= −MijM̂

−1
ij

([
b̄dij

b̄cij

]
+

1

2
M̂ij

[
Ki −Kj

Ki Kj

][
b̄2
i

b̄2
j

])

+Mij

(
M̂−1

ij +

[
Kib̄i +Kj b̄j Kib̄i −Kj b̄j

Kib̄i −Kj b̄j Kib̄i +Kj b̄j

])[
ādij

ācij

]

− 1

2
Mij

[
Ki −Kj

Ki Kj

][
ā2
i

ā2
j

]
−Mij

[
Wdij

Wcij

]
ω̇ −MijM̂

−1
ij

[
n̄dij

n̄cij

]
. (62)

This equation shows that adij and acij are a quadratic function of ādij and ācij plus a linear
function of ω̇. We rewrite the equation as[

adij

acij

]
=

[
¯̄bdij
¯̄bcij

]
+ M̄ij

[
ādij

ācij

]
+ K̄ij

[
ā2
i

ā2
j

]
+ W̄ijω̇ +

[
¯̄ndij
¯̄ncij

]
(63)

where [
¯̄bdij
¯̄bcij

]
= −MijM̂

−1
ij

([
b̄dij

b̄cij

]
+

1

2
M̂ij

[
Ki −Kj

Ki Kj

][
b̄2
i

b̄2
j

])
, (64)

M̄ij = Mij

(
M̂−1

ij +

[
Kib̄i +Kj b̄j Kib̄i −Kj b̄j

Kib̄i −Kj b̄j Kib̄i +Kj b̄j

])
, (65)
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K̄ij = −1

2
Mij

[
Ki −Kj

Ki Kj

]
≈ −1

2

[
Ki −Kj

Ki Kj

]
. (66)

and

W̄ij = −Mij

[
Wdij

Wcij

]
≈ −

[
Wdij

Wcij

]
. (67)

The matrices M̄ij, K̄ij and W̄ij are determined in the calibration against the combined star
tracker angular rates and a gravity field model. It should be noted that the diagonal elements
of M̄ij are coupled to the accelerometer biases through the quadratic factors, which is a conse-
quence of using the biased acceleration measurements as proxy for the true acceleration. Since
the biases are drifting over time, we should expect that the diagonal elements of each 3 × 3
submatrix of M̄ij drift in the same way.

Noting that we have to estimate M̄ij, K̄ij and W̄ij because the true inverse calibration matrix
Mij is unknown, we replace adij and acij by ¯̄adij and ¯̄acij, respectively, in order to signify that
we obtain not the true acceleration, and find the calibrated acceleration[

¯̄adij
¯̄acij

]
=

[
¯̄bdij
¯̄bcij

]
+ M̄ij

[
ādij

ācij

]
+ K̄ij

[
(ācij + ādij)

2

(ācij − ādij)2

]
+ W̄ijω̇ +

[
¯̄ndij
¯̄ncij

]
. (68)

The equation contains the true angular acceleration ω̇, which is also unknown. We use the
angular acceleration ˙̄ω as a proxy, which is calculated using Algorithm 14 using as input the
combined star tracker quaternions, which are an output of Algorithm 6, and the gradiometer
angular accelerations that are calculated from ādij and ācij according to Algorithm 12. We
thus exchange ω̇ by ˙̄ω in Eq.(69) and obtain

[
¯̄adij
¯̄acij

]
=

[
¯̄bdij
¯̄bcij

]
+ M̄ij

[
ādij

ācij

]
+ K̄ij

[
(ācij + ādij)

2

(ācij − ādij)2

]
+ W̄ij ˙̄ω +

[
¯̄ndij
¯̄ncij

]
. (69)

Now that we derived the equations for the calibration in detail, we can summarise the algorithm
for the gradiometer calibration as follows. In the first stage, we use Eq. (53) to apply the inverse
calibration matrices determined in the satellite shaking procedure. In the second stage, we use
Eq. (69) to apply the calibration matrices M̄ij, K̄ij and W̄ij, which are determined in an
advanced calibration procedure from science mode and shaking mode data. In both stages, we
linearly interpolate the calibration matrices in order to account for small drifts in the calibration
parameters. The matrices M̂ij are interpolated between two reference epochs t̂a and t̂b and
the matrices M̄ij, K̄ij and W̄ij are interpolated between two reference epochs t̄a and t̄b. The
reference epochs t̂a and t̂b refer to the dates of satellite shaking procedures, whereas t̄a and t̄b
are manually selected based on reported onboard events and observed data quality, i.e. the
time intervals [t̂a, t̂b] and [t̄a, t̄b] are not necessarily the same.
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Inputs Symbol Unit Contents Source algorithm

Epochs t̂a, t̂b s
References epochs
in GPS seconds

Satellite shaking
procedure

Acceleration
ad14, ac14, ad25,
ac25, ad36, ac36

m/s2

Measured common
and differential
mode acceleration

EGG NOM 1b

Inverse calibration
matrices

M̂14a, M̂25a,
M̂36a, M̂14b,
M̂25b, M̂36b

unitless
Inverse calibration
matrices at epochs
ta nd tb

Satellite shaking
procedure

Outputs Symbol Unit Contents

Acceleration
ād14, āc14, ād25,
āc25, ād36, āc36

m/s2

Shaking mode cal-
ibrated common
and differential
mode acceleration

Table 8: List of inputs and outputs of the gradiometer calibration algorithm (satellite shaking)

Algorithm 8 Gradiometer calibration (satellite shaking)

1: for n← na, nb do

2:

[
ād14n

āc14n

]
=
(
t̂b−tn
t̂b−t̂a

M̂14a + tn−t̂a
t̂b−t̂a

M̂14b

)[âd14n

âc14n

]

3:

[
ād25n

āc25n

]
=
(
t̂b−tn
t̂b−t̂a

M̂25a + tn−t̂a
t̂b−t̂a

M̂25b

)[âd25n

âc25n

]

4:

[
ād36n

āc36n

]
=
(
t̂b−tn
t̂b−t̂a

M̂36a + tn−t̂a
t̂b−t̂a

M̂36b

)[âd36n

âc36n

]
5: end for

6.2 Gross outlier detection and removal

It is advisable to remove gross outliers prior to the angular rate reconstruction since their
effects would be ”smeared out” in the angular rate and acceleration reconstruction that involves
numerical integration and filtering. We employ the following simple algorithm for detecting and
removing gross outliers. The algorithm relies on the fact that moving-median filters are (a)
robust against outliers, spikes, etc. (b) preserve edges and step functions, and (c) behave like
low-pass filters. A symmetric moving median filter is defined by

yn = median(xn−k, xn−k+1, . . . xn+k) (70)
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Algorithm 9 Gradiometer calibration (science mode)

1: for n← na, nb do

2:

[
¯̄ad14n

¯̄ac14n

]
=
(
t̄b−tn
t̄b−t̄a

M̄14a + tn−t̄a
t̄b−t̄a

M̄14b

)[ād14n

āc14n

]

3:

[
¯̄ad25n

¯̄ac25n

]
=
(
t̄b−tn
t̄b−t̄a

M̄25a + tn−t̄a
t̄b−t̄a

M̄25b

)[ād25n

āc25n

]

4:

[
¯̄ad36n

¯̄ac36n

]
=
(
t̄b−tn
t̄b−t̄a

M̄36a + tn−t̄a
t̄b−t̄a

M̄36b

)[ād36n

āc36n

]

5:

[
¯̄ad14n

¯̄ac14n

]
=

[
¯̄ad14n

¯̄ac14n

]
+
(
t̄b−tn
t̄b−t̄a

K̄14a + tn−t̄a
t̄b−t̄a

K̄14b

)[(āc14n + ād14n)2

(āc14n − ād14n)2

]

6:

[
¯̄ad25n

¯̄ac25n

]
=

[
¯̄ad25n

¯̄ac25n

]
+
(
t̄b−tn
t̄b−t̄a

K̄25a + tn−t̄a
t̄b−t̄a

K̄25b

)[(āc25n + ād25n)2

(āc25n − ād25n)2

]

7:

[
¯̄ad36n

¯̄ac36n

]
=

[
¯̄ad36n

¯̄ac36n

]
+
(
t̄b−tn
t̄b−t̄a

K̄36a + tn−t̄a
t̄b−t̄a

K̄36b

)[(āc36n + ād36n)2

(āc36n − ād36n)2

]

8:

[
¯̄ad14n

¯̄ac14n

]
=

[
¯̄ad14n

¯̄ac14n

]
+
(
t̄b−tn
t̄b−t̄a

W̄14a + tn−t̄a
t̄b−t̄a

W̄14b

)
˙̄ω

9:

[
¯̄ad25n

¯̄ac25n

]
=

[
¯̄ad25n

¯̄ac25n

]
+
(
t̄b−tn
t̄b−t̄a

W̄25a + tn−t̄a
t̄b−t̄a

W̄25b

)
˙̄ω

10:

[
¯̄ad36n

¯̄ac36n

]
=

[
¯̄ad36n

¯̄ac36n

]
+
(
t̄b−tn
t̄b−t̄a

W̄36a + tn−t̄a
t̄b−t̄a

W̄36b

)
˙̄ω

11: end for

where xn is the filter input, yn is the filter output, and 2k + 1 is the width of the moving
window. When subtracting the filter output from the filter input, i.e.

en = xn −median(xn−k, xn−k+1, . . . xn+k), (71)

the residuals en should contain mainly high-frequency noise and features like outliers, spikes,
etc. When the width of the moving window is chosen appropriately, the outliers, spikes, etc.
will not be ”smeared out”, as would be the case for a moving-average filter, which makes it
easy to detect them.

An outlier is detected, if the absolute value of en exceeds the threshold k, i.e.

abs(en) > k. (72)

The outliers detected in this way are marked as invalid epochs. In addition to these outliers,
we mark M epochs before and after the outlier. The marked epochs in xn are then replaced by
linear interpolated values, where the last valid epoch before and after the outlier are used for
interpolation.
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In practice, we use the calibrated differential acceleration ādij as input for detecting outliers.
In case we find an outlier in one of the nine time series (three axes for each ij ∈ {14, 25, 36}),
we consider that all acceleration ādij and ācij are affected by outliers. At the beginning and
the end of the time series, the window width of the moving-median filter is shortened such that
the filter does not access the epochs n < 1 or n > N , noting that n = 1 is the first epoch
and n = N is the last epoch, and the window is still centred around epoch n. This implies
e1 = eN = 0 by definition, which means that the algorithm will never detect an outlier in the
first or last epoch.

Algorithm 10 Gross outlier removal (part 1)

1: for n← 1, N do
2: fn = 1 . Initialise flags
3: end for
4: for ij ← 14, 25, 36 do . Loop over all differential acceleration
5: for α← x, y, z do
6: for n← 1, N do . Loop over all epochs
7: if n ≤ W then . Use shorter filter
8: edijα,n = ādijα,n −median(ādijα,1, ādijα,2, . . . ādijα,2n−1)
9: else if n ≥ N −W then . Use shorter filter
10: edijα,n = ādijα,n −median(ādijα,2n−N , ādijα,2n−N+1, . . . ādijα,N)
11: else
12: edijα,n = ādijα,n −median(ādijα,n−W , ādijα,n−W+1, . . . ādijα,n+W )
13: end if
14: if abs(edijα,n) > kdijα then
15: for m← max(n−M, 1),min(n+M,N) do
16: fm = 0 . Mark outlier by setting flag to zero
17: end for
18: end if
19: end for
20: end for
21: end for
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Algorithm 10 Gross outlier removal (part 2)

22: ffirst = f1 . Save first and last flag
23: flast = fN
24: f1 = 1 . Ensure that first and last epoch can be used in linear interpolation
25: fN = 1
26: for n← 1, N do . Search for flagged outliers
27: if fn = 0 then
28: na = n− 1 . Index of last valid epoch before outlier
29: for k ← n+ 1, N do
30: if fk = 1 then
31: nb = k . Index of first valid epoch after outlier
32: break . Interrupt the for-loop
33: end if
34: end for
35: for ij ← 14, 25, 36 do . Loop over all differential acceleration
36: for α← x, y, z do
37: for k ← na + 1, nb − 1 do . Linear interpolation of flagged value
38: ādijα,k = tb−tk

tb−ta
ādijα,na + tk−ta

tb−ta
ādijα,nb

39: end for
40: end for
41: end for
42: end if
43: end for
44: f1 = ffirst . Restore flag of first and last epoch
45: fN = flast
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Inputs Symbol Unit Contents Source algorithm

Epochs t̄a, t̄b s
References epochs
in GPS seconds

Calibration
against star
tracker angular
rates and gravity
field model

Acceleration
ād14, āc14, ād25,
āc25, ād36, āc36

m/s2

Shaking mode cal-
ibrated common
and differential
mode acceleration

Shaking mode cali-
bration

Angular acceleration ˙̄ω rad/s2 Angular accelera-
tion proxy

Angular accelera-
tion reconstruction
algorithm ¡add ref¿

Inverse calibration
matrices

M̄14a, M̄25a,
M̄36a, M̄14b,
M̄25b, M̄36b

unitless
Inverse calibration
matrices at epochs
ta nd tb

Calibration
against star
tracker angular
rates and gravity
field model

Quadratic factor ma-
trices

K̄14a, K̄25a,
K̄36a, K̄14b,
K̄25b, K̄36b

s2/m
Quadratic factor
matrices at epochs
ta nd tb

Calibration
against star
tracker angular
rates and gravity
field model

Angular acceleration
coupling matrices

W̄14a, W̄25a,
W̄36a, W̄14b,
W̄25b, W̄36b

m/rad

Angular accelera-
tion coupling ma-
trices at epochs ta
nd tb

Calibration
against star
tracker angular
rates and gravity
field model

Outputs Symbol Unit Contents

Acceleration
¯̄ad14, ¯̄ac14, ¯̄ad25,
¯̄ac25, ¯̄ad36, ¯̄ac36

m/s2

Calibrated com-
mon and dif-
ferential mode
acceleration

Table 9: List of inputs and outputs of the gradiometer calibration algorithm (science mode)
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Inputs Symbol Unit Contents Source algorithm

Acceleration
ād14, āc14, ād25,
āc25, ād36, āc36

m/s2

Calibrated com-
mon and dif-
ferential mode
acceleration

Gradiometer cali-
bration

Detection threshold kd14, kd25, kd36 m/s2

Thresholds for de-
tecting gross out-
liers

Half window width W
number
of
epochs

Half window width
of moving-median
filter

Number of epochs M
number
of
epochs

Number of epochs
that will be flagged
before and after
detected outliers

Outputs Symbol Unit Contents

Acceleration
ād14, āc14, ād25,
āc25, ād36, āc36

m/s2

Calibrated com-
mon and dif-
ferential mode
acceleration with-
out gross outliers

Flags fn unitless

Flag indicating
if data is inter-
polated (1 = not
interpolated, 0 =
interpolated)

Table 10: List of inputs and outputs of the outlier removal algorithm
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7 Angular rate and acceleration reconstruction

The star trackers provide the inertial attitude, from which we can determine the angular rates
of the satellite by differentiation of the attitude quaternions. The differentiation tilts the star
tracker noise PSD such that high-frequency is amplified and low-frequency noise is dampened.
The star tracker angular rates are therefore accurate at low frequencies and less accurate at
high frequencies. We can determine the angular rates also by integrating the gradiometer
angular rates (except for the integration constant), where the integration tilts the gradiometer
noise PSD such that low-frequency noise is amplified and high-frequency noise is dampened.
Thus, the gradiometer angular rates are accurate at high frequencies and less accurate at low
frequencies. Obviously, the star tracker and gradiometer angular rates are synergetic and the
angular rate and acceleration reconstruction takes advantage of this fact. In a nutshell, we
apply a lowpass filter to the star tracker angular rates and a complementary highpass filter to
the gradiometer angular rates, and add results to arrive at the reconstructed angular rates. The
reconstructed angular accelerations are obtained by differentiating the reconstructed angular
rates.

In the following, we provide details on the calculation of the star tracker and gradiometer
angular rates as well as the angular rate and acceleration reconstruction algorithm. We will
keep the naming of the variables generic because the algorithm is used twice in the processing,
one time prior to the gradiometer calibration to obtain a proxy for the angular accelerations
of the satellite and another time after the calibration of the gradiometer and correction of
misalignments between star trackers and gradiometer.

7.1 Calculation of star tracker angular rates

The calculation of angular rates from the combined star tracker quaternions is straight forward
using Eqs. (34) and (35). Due to the sign ambiguity of quaternions, we need to run Algorithm 4
prior to the differentiation of quaternions. For the epochs when none of the star sensors is
providing a valid attitude, we interpolate the quaternions in order to be able to calculate the
angular rates in all cases. This is needed because the filtering applied in the angular rate
reconstruction is not designed to handle data gaps. Even a single missing attitude quaternion
would lead to a data gap of the length of the reconstruction filters, which is avoided by the
interpolation. We use cubic spline interpolation as specified in Section 2.2. The calculation of
angular rates is detailed in Algorithm 11.
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Inputs Symbol Unit Contents Source algorithm

Attitude
quaternions

q unitless
Orientation of either CRF
or GRF wrt. IRF

Either star tracker combi-
nation or star tracker mis-
alignment adjustment

Epochs t
GPS
second

Epochs of q Star tracker combination

Flags fq unitless
Flags for star tracker quater-
nions (1 = valid, 0 = invalid)

Star tracker combination

Time step ∆t seconds

Time step for approximat-
ing the first time derivative
(shall be much smaller than
sampling rate)

Control parameter

Outputs Symbol Unit Contents

Angular
rates

ω rad/s
Angular rates from com-
bined star tracker quater-
nions

Flags fω unitless
Flags for angular rates (1 =
valid, 0 = invalid)

Table 11: List of inputs and outputs of algorithm for calculation of star tracker angular rates

7.2 Calculation of gradiometer angular rates

The angular rates from the gradiometer are calculated by numerical integration of the gradiome-
ter angular accelerations as described in Algorithm 1. These processing steps are summarised
in Algorithm 12.

7.3 Calculation of filters for angular rate reconstruction

We use the same approach for calculating the angular rate reconstruction filters as Stummer
et al. [2011], with the difference that we define the noise PSDs for star tracker and gradiometer
angular rates differently. Here, we choose a simpler model that allows us to choose very easily
the frequency where the PSDs cross. It is defined by

PS = fαS and PG = cfαG (73)

where f is the frequency vector, PS and PG are the PSD of the star tracker and gradiometer
angular rates, respectively, αS and αG are the slope of these PSDs in the logarithmic domain,
and

c = (f cross)αS−αG (74)
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Algorithm 11 Calculation of star tracker angular rates

1: Run Algorithm 4 on the star tracker quaternions q to make them continuous
2: Interpolate all quaternions for which fq,n = 0 using cubic spline interpolation as specified

in Section 2.2. Flags of interpolated quaternions remain fq,n = 0.
3: for n← 1, N do . Normalize all quaternions (including interpolated ones)
4: qn = qn/

√
qTn qn

5: end for
6: q̇ = differentiate(t, q,∆t) . Algorithm 2
7: W1 = q∗1 q̇1 . Quaternion multiplication

8: ω1 = 2
[
W1,2 W1,3 W1,4

]T
9: fω,1 = fq,1fq,2 . Multiply flags
10: for n← 2, N − 1 do
11: Wn = q∗n q̇n . Quaternion multiplication

12: ωn = 2
[
Wn,2 Wn,3 Wn,4

]T
13: fω,n = fq,n−1fq,nfq,n+1 . Multiply flags
14: end for
15: WN = q∗N q̇N . Quaternion multiplication

16: ωN = 2
[
WN,2 WN,3 WN,4

]T
17: fω,N = fq,N−1fq,N . Multiply flags

Algorithm 12 Calculation of gradiometer angular rates

1: ω̇x = −ad36y/Lz + ad25z/Ly
2: ω̇y = −ad14z/Lx + ad36x/Lz
3: ω̇z = −ad25x/Ly + ad14y/Lx
4: ωx = integrate(t, ω̇x, K) . Algorithm 1
5: ωy = integrate(t, ω̇y, K)
6: ωz = integrate(t, ω̇z, K)

is a scale factor depending on the frequency f cross that defines where PS and PG cross each
other. The length of the frequency vector is equal to the length of the filters, which we denote
by NF and must be an odd integer that is large enough to achieve sufficient resolution in the
spectral domain. We recommend to use

NF ≈
10

f cross
. (75)

Since the components x, y and z of the angular rates are reconstructed independently, we
omit the subscripts x, y and z in the following for simplicity. In practice, we have to run the
algorithms for the calculation of the angular rate reconstruction filters as well as the angular
rate reconstruction itself three times, i.e. once per component. It is possible to use different
input parameters such as f cross for each component.
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Inputs Symbol Unit Contents Source algorithm

Accelerations adij m/s2 Calibrated accelerations
Either satellite shaking
or science mode gra-
diometer calibration

Epochs t
GPS
second

Gradiometer measure-
ment epochs

EGG NOM 1B files

Gradiometer
arm length

Lx, Ly, Lz meters Gradiometer arm length

Factor K unitless
Factor defining the in-
crease of epochs of the
upsampled time series

Control parameter

Outputs Symbol Unit Contents

Angular rates ω rad/s
Angular rates from gra-
diometer

Table 12: List of inputs and outputs of algorithm for calculation of gradiometer angular rates

Inputs Symbol Unit Contents

Crossing frequency f cross Hz Frequency of equal spectral weights

Length of filter NF unitless Length of filter (odd integer)

Exponent αS, αG unitless Slopes of PSDs in logarithmic domain

Outputs Symbol Unit Contents

Filter coefficients FS, FG unitless
Filter coefficients for one component
(x, y or z) of the angular rates

Table 13: List of inputs and outputs for calculation of angular rate reconstruction filters

7.4 Application of filters for angular rate reconstruction

The angular rate reconstruction filters calculated according to Algorithm 13 are symmetric
moving-average filters. Applying the filters is therefore a convolution in the time domain,
which can be efficiently performed as an element-wise multiplication in the frequency domain.
We use the symbol � for notating elementwise multiplication, i.e.


a1

a2

...

aN

�

b1

b2

...

bN

 =


a1b1

a2b2

...

aNbN

 . (76)
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Algorithm 13 Calculation of filters for angular rate reconstruction

1: K = ceil(NF/2) . Index of mid frequency

2: f = 1
NF

[
0 1 · · · NF − 1

]T
. Frequency vector

3: c = (f cross)αS−αG

4: PG = cfαG . Define PSDs
5: PS = fαS

6: for n← 2, K do . Make PSD symmetric around mid frequency
7: PS,NF−n+2 = PS,n
8: PG,NF−n+2 = PG,n
9: end for

10: WS = zeros(size(PS)) . Spectral weights for star tracker angular rates
11: if αS − αG < 0 then . Spectral weight for zero frequency
12: WS,1 = 0
13: else if αS − αG > 0 then
14: WS,1 = 1
15: else
16: WS,1 = c/(c+ 1)
17: end if
18: for n← 2, NF do
19: WS,n = PG,n/(PG,n + PS,n) . Spectral weight for non-zero frequencies
20: end for
21: FS = ifft(WS) . Filter coefficients

22: FS =
[
FS,K+1 FS,K+2 · · · FS,NF

FS,1 FS,2 · · · FS,K

]
. Resort coefficients

23: FG = −FS . Complementary filter
24: FG,K = FG,K + 1

Generally, symmetric moving-average filters produce transient effects at the beginning and the
end of the angular rate time series. Instead of cropping the filtered time series by half the filter
length, we use a different approach for reducing the transient effects. Since the length NF of the
filters is an input parameter to Algorithm 13, it is straight forward to generate shorter filters.
For the first epoch of the filtered time series, we create a filter of length NF = 1 and apply it
to the first value of the input time series; for the second epoch of the filtered time series, we
create a filter of length NF = 3 and apply it to the first three values of the input time series;
and so forth until we have reached half the length of the filter. We repeat the same procedure
for the end of the filtered time series. This approach avoids transient effects except for the
first and last few epochs of the filtered time series, for which we extrapolate the gradiometer
angular rates after fitting them to the sum of the filtered star tracker and gradiometer angular
rates. The entire approach is detailed in Algorithm 14.
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Inputs Symbol Unit Contents

Crossing frequency f cross Hz Frequency of equal spectral weights

Length of filter NF unitless Length of filter (odd integer)

Exponent αS, αG unitless Slopes of PSDs in logarithmic domain

Number of epochs M unitless Number of epochs at beginning/end

Angular rates ωS, ωG rad/s
One component (x, y or z) of the star
trackers and gradiometer angular rates

Outputs Symbol Unit Contents

Angular rates ω rad/s
One component (x, y or z) of the recon-
structed angular rates

Angular accelerations ω̇ rad/s2

One component (x, y or z) of the re-
constructed angular accelerations (op-
tional)

Table 14: List of inputs and outputs of angular rate reconstruction algorithm

Algorithm 14 Angular rate reconstruction (part 1)

1: K = floor(NF/2)
2: Create FG and FS of length NF using Algorithm 13
3: Nω = length(ωG) . Same length as ωS
4: NFFT = 2ceil(log2(NF +Nω−1)) . Convolution of filters and angular rates
5: h = ifft(fft(FG, NFFT )� fft(ωG, NFFT ) + fft(FS, NFFT )� fft(ωS, NFFT ))

6: ω =
[
hK+1 hK+2 · · · hK+Nω

]T
7: for n← 1,min(K, ceil(Nω/2)) do . Apply shorter filters at beginning and end
8: Create FG and FS of length 2n− 1 using Algorithm 13

9: ωn = F T
G


ωG,1

ωG,2
...

ωG,2n−1

+ F T
S


ωS,1

ωS,2
...

ωS,2n−1



10: ωNω−n+1 = F T
G


ωG,Nω−2n+2

ωG,Nω−2n+3

...

ωG,Nω

+ F T
S


ωS,Nω−2n+2

ωS,Nω−2n+3

...

ωS,Nω


11: end for
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Algorithm 14 Angular rate reconstruction (part 2)

12: τ = 1
2M

[
1 2 · · · 2M

]T
. Replace first/last M elements of ω with trend-corrected ωG

13: A1 =


τ1 1− τ1

τ2 1− τ2

...
...

τ2M 1− τ2M



14: A2 =


τM+1 1− τM+1

τM+2 1− τM+2

...
...

τ2M 1− τ2M


15: p = 1

2
+ 1

2
cos(πτ )

16: ∆ω =
[
ωM+1 ωM+2 · · · ω2M

]T
−
[
ωG,M+1 ωG,M+2 · · · ωG,2M

]T
17: x = (AT

2A2)−1AT
2 ∆ω

18:


ω1

ω2

...

ω2M

 = (


1

1
...

1

− p)


ω1

ω2

...

ω2M

+ p(


ωG,1

ωG,2
...

ωG,2M

+A1x)

19: ∆ω =
[
ωNω−M ωNω−M−1 · · · ωNω−2M+1

]T
−
[
ωG,Nω−M ωG,Nω−M−1 · · · ωG,Nω−2M+1

]T
20: x = (AT

2A2)−1AT
2 ∆ω

21:


ωNω

ωNω−1

...

ωNω−2M+1

 = (


1

1
...

1

− p)


ωNω

ωNω−1

...

ωNω−2M+1

+ p(


ωG,Nω

ωG,Nω−1

...

ωG,Nω−2M+1

+A1x)

22: ω̇ = differentiate(ω) . optional, Algorithm 2
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8 Attitude reconstruction

The goal of the attitude reconstruction is improving the attitude provided by the combined
star sensors through incorporating the reconstructed angular rates. Since the latter describe
the rotation from one epoch to the next, we fit the integrated reconstructed angular rates to a
sequence of combined star tracker attitude quaternions. The principle is illustrated in Fig. 2.
The attitude quaternions resulting purely from the reconstructed angular rates are expected to
be much more smooth than the combined star tracker attitude quaternions, because they include
the gradiometer angular rates, which are more accurate than star tracker angular rates at high
frequencies. However, small errors will accumulate in the integration of the reconstructed
angular rates, so that the resulting integrated attitude quaternions are expected to be less
accurate at low frequencies.

Figure 2: Principle of the proposed attitude reconstruction algorithm.

8.1 Mathematical derivation of algorithm

Before deriving the algorithm, it is instructive to introduce a different notation of variables. We
denote the quaternions of the combined star trackers, which are corrected for the misalignment
between star trackers and gradiometers, by qmeasn , i.e.

qmeasn = qIRFGRF,n. (77)
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Further, we define the quaternion qtruen as the true (free of errors and noise) counterpart of
qmeasn and the rotation quaternion qrotn→n+k, which describes the rotation of the gradiometer from
epoch tn to tn+k in the sense of

qrotn→n+k = (qIRFGRF,n)∗qIRFGRF,n+k, (78)

where it is emphasised that qrotn→n+k is calculated by integrating the reconstructed angular rates,
which we denote by ωn. With this notation, we can express the measured quaternion qmeasn+k as
a rotated version of the true quaternion qmeasn , i.e.

qmeasn+k = qnoisen+k q
true
n qrotn→n+k (79)

where qnoisen+k reflects the combined effect of the noise of the combined attitude quaternion qmeasn+k

and the noise of the rotation quaternion qrotn→n+k that results from the integration of the recon-
structed angular rates. The noise quaternion qnoisen+k is assumed to represent a small rotation,
i.e.

qnoisen+k =


1

εx,n+k/2

εy,n+k/2

εz,n+k/2

 (80)

where εx,n+k, εy,n+k and εz,n+k are small angles as described in Section 3.

In order to explain the relation between the rotation quaternion qrotn→n+k and the reconstructed
angular rates ωn, we decompose qrotn→n+k into a series of rotations,

qrotn→n+k = qrotn→n+1q
rot
n+1→n+2 . . . q

rot
n+k−1→n+k, (81)

noting that the sequence of rotation is important as quaternions are not commutative. Each
quaternion qrotn+i→n+i+1 where i ∈ {0, . . . , k − 1} is calculated from the reconstructed angular
rates according to

qrotn+i→n+i+1 =

[
cos(φ/2)

sin(φ/2)e

]
(82)

where

φ =
|ωn+i+1 + ωn+i|

2
(83)

is the angle of rotation and

e =
ωn+i+1 + ωn+i

|ωn+i+1 + ωn+i|
(84)

is the rotation axis.

The measured quaternion qmeasn+k in Eq. (79) composes of the product of the noise quaternion
qnoisen+k and the true quaternion qtruen , which are both unknown. Since this would lead us to
the least-squares adjustment according to the non-linear mixed model (Gauß-Helmert model),
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we reformulate Eq. (79) in the following such that we can use linear generalised least squares
(Gauß-Markov model), which is much simpler to solve. We start with rearranging Eq. (79) to

qmeasn+k (qtruen qrotn→n+k)
∗ = qnoisen+k . (85)

Now we define the relative error of the quaternions of epochs n and n+ k as

qreln,n+k = qnoisen (qnoisen+k )∗, (86)

which we can calculate according to Eq. (85) as

qreln,n+k = qmeasn (qtruen qrotn→n)∗(qmeasn+k (qtruen qrotn→n+k)
∗)∗

= qmeasn (qtruen )∗qtruen qrotn→n+k(q
meas
n+k )∗

= qmeasn qrotn→n+k(q
meas
n+k )∗ (87)

noting that qrotn→n is a unit quaternion, i.e.

qrotn→n =


1

0

0

0

 . (88)

It is important to realise that we can calculate the relative error of the quaternions qreln,n+k

from Eq. (87), even though it is the product of two unknown noise quaternions as described in
Eq. (86). Because of the latter, we assume that it represents a small rotation denoted by

qreln,n+k =


1

δx,n,n+k/2

δy,n,n+k/2

δz,n,n+k/2

 . (89)

By rearranging Eq. (86) to

qreln,n+kq
noise
n+k = qnoisen (90)

we can express the noise of epoch n+ k as the noise of epoch n multiplied by the relative error,
or equivalently

dn,n+k + en+k = en +O(e2) (91)

where

dn,n+k =

δx,n,n+k

δy,n,n+k

δz,n,n+k

 , en =

εx,nεy,n

εz,n

 and en+k =

εx,n+k

εy,n+k

εz,n+k

 . (92)
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We can write the observation equations of the generalised least-squares adjustment based on
Eq. (91) as 

dn,n−K
...

dn,n−1

0

dn,n+1

...

dn,n+K


︸ ︷︷ ︸

y

+



en−K
...

en−1

en

en+1

...

en+K


︸ ︷︷ ︸

v

=



I
...

I

I

I
...

I


︸︷︷︸
A

ẽn (93)

where y is the observation vector, v is the residual vector, A is the design matrix and ẽn are
the parameters.

8.2 Covariance matrix

Before we can calculate the parameters ẽn in Eq. (93) according to generalised least-squares, we
need to construct the covariance matrix. For that purpose we need to consider the covariance
matrices of en+k for k = −K, . . . ,K and their correlations. As mentioned before, qnoisen+k , and
thus en+k, reflects the noise from the combined star tracker attitude quaternions as well as
reconstructed angular rates.

The star tracker attitude combination algorithm provides for each epoch the covariance infor-
mation of the combined attitude quaternion. It depends on which star trackers are combined
and it show large differences between the case when only one star tracker is available and the
case when more than one star tracker is available. Since the stars that are in the field of view
of the star tracker change slowly along the orbit, we expect that the combined star tracker
quaternions show some time correlation between epochs that differ by a few minutes as well
as epochs from one orbit to the next since the attitude almost repeats from one orbit to the
next. Such correlations are most likely due to small, systematic attitude errors that are clearly
visible when inspecting the inter-boresight angles.

The noise in the reconstructed angular rates affects the rotation quaternions qrotn→n+k. It is
obvious from Eq. (81) that the variance of the noise in qrotn→n+k grows proportionally with k2

and also shows large time correlations due to the integration of the angular rates described by
that equation. Furthermore, we expect correlations between the rotation quaternions and the
star tracker quaternions because the latter were used in the calculation of the first.

We conclude from the discussion that the covariance matrix should in principle be fully pop-
ulated. However, using a fully populated covariance matrix would result in an extremely high
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computational effort since one would have to invert a large matrix for each epoch. There-
fore, we ignore time correlations and reduce thereby the covariance matrix to a block-diagonal
structure, with one 3 × 3 block per epoch. The computational effort will still be high, but
manageable for a single CPU. There are two properties that we take into account when con-
structing the covariance matrix. The first is the covariance information that we get from the
star tracker combination and the second is the linearly increasing standard deviation of the
noise in the rotation quaternions. The ”slope” of the increase can be determined empirically
from residuals between combined star tracker attitude quaternions, which are corrected for the
misalignment between star trackers and quaternions, and the rotation quaternions resulting
from the integration of the reconstructed angular rates.

The covariance matrix that we utilise has therefore a block-diagonal structure,

Σ =


Σn−K 0 · · · 0

0 Σn−K+1
. . .

...
...

. . . . . . 0

0 · · · 0 Σn−K

 , (94)

where each block of dimension 3× 3 is the sum

Σn+k = Σmeas
n+k + Σrot

n+k (95)

of the covariance matrix Σmeas
n+k of the combined star sensor quaternion and the covariance

matrix Σrot
n+k of the rotation quaternion.

The covariance matrices Σmeas
n+k of the combined star sensor quaternion are an output of Al-

gorithm 6, which provides the cofactor matrices Q1, . . .Q123 and the square-sum of residuals
Ω. The latter still needs to be divided by the redundancy of the least-squares adjustment, in
which the combined star tracker quaternions were estimated, in order to obtain the a posteriori
variance factor σ2

0. The redundancy R can be calculated from the flags fS1 , fS2 and fS3 of the
resampled and star tracker quaternions and the flags f of the combined star trackers by

R = 3
N∑
n=1

(fn − fS1,n − fS2,n − fS3,n), (96)

which gives then an a posteriori variance factor

σ2
0 =

Ω

R
. (97)

The covariance matrices for the different combinations of available star trackers are the product
of the variance factor and the cofactor matrices, i.e.

Σmeas
S1,n+k = σ2

0Q1, Σmeas
S2,n+k = σ2

0Q2, etc. (98)

Page 55/63

GOCE Level 1B Gravity Gradient Processing Algorithms

Issue Date 27/08/2018 Ref ESA-EOPSM-GOCE-TN-3397



ESA UNCLASSIFIED - Releasable to the Public

Since the cofactor matrices are constant, we list their values in Eqs. (99–105). The a posteriori
variance factor σ̂2

0 is approximately σ̂2
0 = 132 µrad2.

Q1 =

 1.000121521459708 0.095222836108324 −0.054435478192699

0.095222836108324 75.615532876845165 −42.655022458413313

−0.054435478192699 −42.655022458413320 25.384345601751161

 (99)

Q2 =

 1.001561466393628 −0.131503870039127 0.370525932944455

−0.131503870039127 12.075017626225865 −31.205022613483280

0.370525932944455 −31.205022613483280 88.923420907434434

 (100)

Q3 =

 41.413359274606734 42.610626719061884 −23.495051626509660

42.610626719061884 45.927359219359751 −24.772473572404802

−23.495051626509660 −24.772473572404802 14.659281505935640

 (101)

Q12 =

 0.500011447421263 −0.002903273148382 0.004247636496021

−0.002903273148382 1.919411345174103 −1.616662280334516

0.004247636496021 −1.616662280334516 2.502024213487087

 (102)

Q13 =

 0.965936848197282 0.968247299647752 −0.543564953526007

0.968247299647752 2.879509027619699 −1.339618855085098

−0.543564953526007 −1.339618855085097 1.254213201185986

 (103)

Q23 =

 0.790153006185965 0.391922949490108 −0.408574304412965

0.391922949490108 1.085989398656493 −0.709773601283014

−0.408574304412965 −0.709773601283014 1.515784721963927

 (104)

Q123 =

 0.436398899448459 0.214237386367438 −0.179540976548104

0.214237386367438 0.986366903459979 −0.587553396581192

−0.179540976548104 −0.587553396581192 0.931510054952443

 (105)

The covariance matrix of the rotation quaternion Σrot
n+k is modelled as the diagonal matrix

Σrot
n+k =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

 (106)
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where the variances σ2
x, σ

2
y and σ2

z are a quadratic functions of the time difference, i.e. they
depend only on the index k. The functions are determined empirically from the data. Fig. 3
shows the residuals between reconstructed attitude quaternions and the quaternions that result
from rotating an initial quaternion. This was performed for a number of epochs in order to be
able to calculate the variance. We can clearly see that the errors increase quadratically with
the time difference.

Figure 3: Variance between rotation quaternions and reconstructed attitude.

Figure 3 also shows two functions that approximate the increasing variance of the residuals.
We use these functions to model the variances

σ2
x = 3× 10−10(25× 10−6 ×∆tk)

2 = σ2
0,x∆t

2
k, (107)

σ2
y = 3× 10−10(64× 10−6 ×∆tk)

2 = σ2
0,y∆t

2
k (108)

and
σ2
z = 3× 10−10(25× 10−6 ×∆tk)

2 = σ2
0,z∆t

2
k (109)

where ∆tk = |tn+k − tn|. Note that the purpose of the constant 3 × 10−10rad2 in Fig. 3 is
accounting for the variance of the combined attitude quaternion.
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8.3 Algorithm

The attitude reconstruction is detailed in Algorithm 15. It should be noted that in case some
combined star tracker quaternions are not available (flag is zero), they will simply not be
used in the attitude reconstruction, with the only exception of the centre epoch for which we
reconstruct the attitude quaternion. Technically, they receive zero weight in the least squares
estimation by setting

Σ−1
n+k = (Σmeas

n+k + Σrot
n+k)

−1 = 0. (110)

Inputs Symbol Unit Contents Source algorithm

Attitude quaternions qmeas unitless
Orientation of
GRF wrt. IRF

Star tracker combi-
nation

Angular rates ω rad/s
Rotation rate of
GRF wrt. IRF

Angular rate re-
construction

Flag for star trackers fS1 , fS2 , fS3 unitless
1 = valid, 0 = in-
valid

Star tracker combi-
nation

Covariance matrices
ΣS1 , ΣS2 , ΣS3 ,
ΣS12 , ΣS13 ,
ΣS23 , ΣS123

rad2

Covariance matrix
of combined star
tracker attitude

Star tracker combi-
nation

Variances σ2
0,x, σ

2
0,y, σ

2
0,z rad2

Variance function
for reconstructed
angular rates

Data analysis (cf.
Fig. 3

Half window width K unitless
Numbers of epochs
to the left/right of
the centre epoch

Outputs Symbol Unit Contents

Attitude quaternions qrec unitless
Orientation of
GRF wrt. IRF

Rotation matrices Rrec unitless
Orientation of
GRF wrt. IRF

Table 15: List of inputs and outputs of attitude reconstruction algorithm
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Algorithm 15 Attitude reconstruction algorithm (part 1)

1: Run Algorithm 4 on qmeas

2: Interpolate quaternions qmeasn where fS1,n = fS2,n = fS3,n = 0 using cubic spline interpola-
tion described in Section 2.2. Flags of interpolated quaternions remain zero.

3: for n← 1, N do . Normalize quaternions (including interpolated ones)
4: qmeasn = qmeasn /

√
(qmeasn )T qmeasn

5: end for
6: for n← 1, N − 1 do . Calculate rotation quaternions for later use
7: ω̄ ← ωn+1+ωn

2
(tn+1 − tn)

8: q̂rotn→n+1 ←

[
cos(|ω̄|/2)
sin(|ω̄|/2)
|ω̄| ω̄

]
. The hat designates that quaternions are stored

9: end for
10: for n← 1, N do . Reconstruct attitude (exclude first/last K epochs)
11: if fS1,n = 0 and fS2,n = 0 and fS3,n = 0 then
12: qrecn = qmeasn

13: f recn = 0
14: else
15: Σmeas

n ← ΣS1 or ΣS2 or . . . ΣS123 . Depending on fS1,n, fS2,n and fS3,n

16: N ← (Σmeas
n )−1 . Initialise normal equation matrix

17: b←
[
0 0 0

]T
. Initialise right-hand side of normal equations

18: qrotn→n+k ←
[
1 0 0 0

]T
. Initialise rotation quaternion (k = 0)

19: for k ← 1,min(K,N − n) do
20: qrotn→n+k ← qrotn→n+kq̂

rot
n+k−1→n+k

21: if fS1,n+k = 1 or fS2,n+k = 1 or fS3,n+k = 1 then
22: qreln,n+k ← qmeasn qrotn→n+k(q

meas
n+k )∗

23: dn,n+k ← 2
[
qreln,n+k(2) qreln,n+k(3) qreln,n+k(4)

]T
24: Σmeas

n+k ← ΣS1 or . . . ΣS123 . Depending on fS1,n+k, fS2,n+k and fS3,n+k

25: Σrot
n+k ←

σ2
x,0 0 0

0 σ2
y,0 0

0 0 σ2
z,0

 (tn − tn+k)
2

26: Σn+k ← Σmeas
n+k + Σrot

n+k

27: N ←N + Σ−1
n+k

28: b← b+ Σ−1
n+kdn,n+k

29: end if
30: end for
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Algorithm 15 Attitude reconstruction algorithm (part 2)

31: qrotn→n+k ←
[
1 0 0 0

]T
. Initialise rotation quaternion (k = 0)

32: for k ← −1,max(−K, 1− n) do
33: qrotn→n+k ← qrotn→n+k(q̂

rot
n+k→n+k+1)∗ . This line is different to the previous for-loop

34: if fS1,n+k = 1 or fS2,n+k = 1 or fS3,n+k = 1 then
35: qreln,n+k ← qmeasn qrotn→n+k(q

meas
n+k )∗

36: dn,n+k ← 2
[
qreln,n+k(2) qreln,n+k(3) qreln,n+k(4)

]T
37: Σmeas

n+k ← ΣS1 or . . . ΣS123 . Depending on fS1,n+k, fS2,n+k and fS3,n+k

38: Σrot
n+k ←

σ2
0,x 0 0

0 σ2
0,y 0

0 0 σ2
0,z

 (tn − tn+k)
2

39: Σn+k ← Σmeas
n+k + Σrot

n+k

40: N ←N + Σ−1
n+k

41: b← b+ Σ−1
n+kdn,n+k

42: end if
43: end for
44: ẽ = N−1b

45: qrecn ← 1√
1+ẽT ẽ/4

[
1

−ẽ/2

]
qmeasn . Including normalisation of quaternion

46: f recn = 1

47: Rrec
n =

[
(qrecn,0)2 + (qrecn,1)2 − (qrecn,2)2 − (qrecn,3)2 2(qrecn,1q

rec
n,2 + qrecn,0q

rec
n,3) 2(qrecn,1q

rec
n,3 − qrecn,0q

rec
n,2)

2(qrecn,1q
rec
n,2 − qrecn,0q

rec
n,3) (qrecn,0)2 − (qrecn,1)2 + (qrecn,2)2 − (qrecn,3)2 2(qrecn,2q

rec
n,3 + qrecn,0q

rec
n,1)

2(qrecn,1q
rec
n,3 + qrecn,0q

rec
n,2) 2(qrecn,2q

rec
n,3 − qrecn,0q

rec
n,1) (qrecn,0)2 − (qrecn,1)2 − (qrecn,2)2 + (qrecn,3)2

]
48: end if
49: end for
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9 Gravity gradient calculation

The calculation of the gravity gradients is provided in Algorithm 16.

Inputs Symbol Unit Contents Source algorithm

Acceleration ad14, ad25, ad36 m/s2

Calibrated differ-
ential mode accel-
eration

Gradiometer cali-
bration in science
mode

Angular rates ω rad/s
Rotation rate of
GRF wrt. IRF

Angular rate re-
construction

Arm length Lx, Ly, Lz m
Lengths of the gra-
diometer arms

Outputs Symbol Unit Contents

Gravity gradients
Vxx, Vyy, Vzz,
Vxy, Vxz, Vyz

s−2 Gravity gradients
in GRF

Table 16: List of inputs and outputs of attitude reconstruction algorithm

Algorithm 16 Gravity gradient calculation algorithm

1: for n← 1, N do
2: Vxx,n = −2ad14x,n/Lx − ω2

y,n − ω2
z,n

3: Vyy,n = −2ad25y,n/Ly − ω2
x,n − ω2

z,n

4: Vzz,n = −2ad36z,n/Lz − ω2
x,n − ω2

y,n

5: Vxz,n = −ad14z,n/Lx − ad36x,n/Lz + ωx,nωz,n
6: Vxy,n = −ad25x,n/Ly − ad14y,n/Lx + ωx,nωy,n
7: Vyz,n = −ad36y,n/Lz − ad25z,n/Ly + ωy,nωz,n
8: end for
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