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1. About this document

1.1. Purpose and scope

SCIAMACHY is a joint project of Germany, the Netherlands and Belgium for atmospheric measurements.
SCIAMACHY has been selected by the European Space Agency (ESA) for inclusion in the list of instruments
for Earth observation research for the ENVISAT polar platform, which has been launched in 2002. After 10
years in space, the contact to the ENVISAT was lost on the 8th April 2012. On the 9th May 2012, ESA declared
the official end of the ENVISAT Mission. The SCIAMACHY programme was under the supervision of the
SCIAMACHY science team (SSAG), headed by the Principal Investigators Professor J. P. Burrows (University
of Bremen, Germany), Professor I.A.A. Aben (SRON, The Netherlands) and Dr. C. Muller (BIRA, Belgium).
The Quality Working Group has been installed in 2007 to intensify the development and implementation of the
Algorithm Baseline for the operational data processing system of SCIAMACHY. Current members of the QWG
are the University of Bremen (IUP-B) (Lead), BIRA, DLR, and SRON. The expertise of KNMI is brought in via
an association with SRON.

This document describes the algorithms used in the Level 1b-2 processing of SCIAMACHY data. Focus is the
mathematical description and not the technical implementation.

1.2. Historical Background

The SCIAMACHY instrument was conceived in the mid-1980’s in recognition of the need to monitor chemically
important trace species on a global basis using passive remote sensing devices. The importance of monitoring
global ozone distributions was demonstrated by the TOMS (Total Ozone Monitoring Spectrometer) instrument
on board Nimbus 7, especially after the discovery of the ozone hole in 1985. The SCIAMACHY measurement
strategy and mission objectives were based in part on the successful extension in the early 1980s of differ-
ential spectroscopic methods to retrieve atmospheric trace gas amounts from ground-based measurements
using moderate-resolution spectrometers. Following an approach to ESA (European Space Agency) an initial
study was commissioned and the results published in 1988. The scientific consortium was then invited to carry
out a detailed Phase A feasibility study, which was finished in 1991. During this time, a scaled-down version of
SCIAMACHY was commissioned and accepted for inclusion on the ERS-2 satellite. This “mini-SCIAMACHY”
became the GOME (Global Ozone Monitoring Experiment) instrument, which has been functioning success-
fully since the 1995 launch of ERS-2. SCIAMACHY was accepted as an AO (Announcement of Opportunity)
instrument to be included on the ENVISAT satellite. For the Phase C/D completion, the flight model was built in
1998, and calibrated in early 1999. ENVISAT was launched in March 2002 and after the commissioning phase,
SCIAMACHY was in operational mode between July 2002 and April 2012, when the contact to the ENVISAT
was lost.

1.3. Acronyms and Abbreviations

AMC-DOAS Air Mass Corrected Differential Optical Absorption Spectroscopy

AMF Air Mass Factor

AO Announcement of Opportunity

ATBD Algorithm Theoretical Baseline Document
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BIRA Belgisch Instituut voor Ruimte-Aëronmie

BIRRA Beer InfraRed Retrieval Algorithm

DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Centre)

DOAS Differential Optical Absorption Spectroscopy

DRACULA aDvanced Retrieval of the Atmosphere with Constrained and Unconstrained Least squares Al-
gorithms

ECMWF European Centre for Medium-Range Weather Forecasts

ENVISAT ENVIronmental SATellite

ESA European Space Agency

GOME Global Ozone Monitoring Experiment

IUP-B Institut für Umweltphysik Bremen (Institute for Environmental Physics)

MDS Measurement Data Set

PMD Polarisation Measurement Device

RTM Radiative Transfer Model

SGP SCIAMACHY Ground Processor

SCIAMACHY Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY

SRON Space Research Organisation Netherlands

TOMS Total Ozone Monitoring Spectrometer

1.4. Document Overview

The document is divided into three parts plus appendices:

1. Introduction (this part)

2. Nadir retrieval algorithms: Cloud parameters, AAI and total columns of trace gases

3. Limb retrieval algorithms: Cloud parameters and profiles of trace gases

4. Appendices describing data structure etc.

Part two and three start with a general description of the retrieval method. After that the settings for the
individual retrievals are described as well as additional or deviating methods used in the retrieval.
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2. The Data Processor

2.1. Processing flow overview

The processing from Level 1b to Level 2 products is separated into the following steps (generally performed on
individual fitting windows):

1. Calibration of data, i.e. generation of internal Level 1c data, using the same algorithms as the scial1c
applicator according to the calibration settings in the configuration file

2. Calculation of the ratio Sun/Earth (note that this is not necessarily the reflectance, since not radiometric
calibrated data can be used)

3. Climatological pre-processing:

a) Calculation of Cloud Parameters (fraction, optical depth, top height)

b) Initialisation of data bases

4. Nadir- and limb retrievals

5. Writing of Level 2 MDS and offline product

2.2. Components of the Data Processor

The SGP consists of three main components

1. The database server

2. The nadir retrieval server

3. The limb retrieval server

Other components taking care of communication between the different running processes, data delivery to and
from the SGP_12OL (also referred to simply as SGP or offline processor in this document) and interfaces to
the main host running the ENVISAT processors are left out here. A more technical view of the SGP_12OL,
including the outward interfaces is given in the Architectural Design Document (Kretschel, 2006). The primary
input to the SGP_12OL is a SCIAMACHY Level 1b file, processed by the Level 0-1b processor (Slijkhuis and
Lichtenberg, 2014). Within the ground segment the SGP only has one Auxiliary file as input, the initialisation
file (Lichtenberg and Kretschel, 2009). All other auxiliary inputs like topographic databases or pressure profiles
needed for the trace gas retrieval are handled within the SGP itself, i.e. those are integral part of the offline
processor itself. Generally, the processing is done state wise: Each state from an Level 1b input file (usually
encompassing a complete orbit) is relegated to one instance of the Nadir or Limb retrieval server. The first step
in the processing is the calibration of the Earthshine spectra to radiances. Note, that no Level 1c product is
written in the Level 1b to 2 processing, the calibrated spectra solely exist as internal data within the processor.
However, the scial1c tool (Scherbakov, 2008) is based on the same algorithms as the calibration in the SGP
and can be used to generate Level 1c products. Both deliver the same results which makes it possible to easily
verify the SGP w.r.t. scientific reference algorithms.

More than one retrieval server can run at a given time. When the last state of the input product is processed,
the results are collected and used to generate the Level 2 product.
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2.2.1. Database Server

The database server is a separate process, which handles the auxiliary input for the retrievals. It is split up into
the GeoDataServer which provides topographical data, the RefSpecDataServer which provides the reference
spectra for the fits of the measured spectrum and CommonDataServer for the remaining data like pressure
or temperature profiles. Upon triggering by the retrieval server, the database server not only reads in the
requested data, but also does simple tasks like interpolating the correct wavelength grid. It also caches data
that are needed by more than one retrieval to accelerate the processing. The server is set up in a generic way
making it easy to add or exchange data needed for a given retrieval.

2.2.2. Nadir Retrieval Server

Before the nadir measurements are processed, the cloud parameters and AAI are retrieved in the climatological
pre-processing. The cloud parameters are used in the subsequent retrieval of the trace gases. For the Nadir
DOAS retrievals the kernel of the GDP was modified to accept SCIAMACHY input. The retrieval algorithms
themselves were not modified meaning that the SGP products have the same quality as the GOME products
albeit on a higher spatial resolution. The basis for the SGP DOAS implementation is the SDOAS scheme
developed by BIRA, which is closely based on the GDOAS developed for GOME.

2.2.3. Limb Retrieval Server

The Limb retrieval is done by the DLR developed package DRACULA. While various models are implemented
in DRACULA, the SGP uses the Iterative Regularized Gauss-Newton Method. It includes sophisticated tech-
niques to select the iteration and regularisation parameters. A polynomial is fitted to radiances to remove broad
spectral features and ratioed radiances are constructed for each tangent height. Finally the logarithm of the
ratios determines the basis for the retrieval.

2.3. Overview of MDS

The so called measurement data sets (MDSs) contain the measurements of the atmosphere. Four MDS’s
exist:

Cloud & Aerosol MDS Contains the cloud parameters measured in nadir geometry: cloud fraction, cloud
top height and cloud optical thickness. The algorithms are described in chapter
3.

Nadir MDS Contains the trace gas columns: O3, NO2, HCHO, SO2, BrO, H2O, CHOCHO,
OClO, CO and CH4. The algorithms are explained in chapters 5, 6 and 7

Limb MDS Contains the trace gas profiles of O3, NO2 and BrO. The algorithms are explained
in chapter 8.

Limb Cloud MDS Contains height resolved indicators for cloud presence and type (water clouds,
PSCs and NLCs). The algorithm is explained in chapter 9.

A detailed description of all MDS entries can be found in Annex A. Note that the MDS also contain empty
entries for future retrievals. The results of the tropospheric NO2retrieval are stored in a Nadir MDS.
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3. Cloud Parameters

3.1. Cloud Top Height and Cloud Optical Thickness

3.1.1. Overview

Clouds play an important role in the Earth climate system (Kondratyev and Binenko, 1984) . The amount
of radiation reflected by the Earth-atmosphere system into outer space depends not only on the cloud cover
and the total amount of condensed water in the Earth atmosphere but also the size of droplets aef and their
thermodynamic state is also of importance.

The information about microphysical properties, cloud top height and spatial distributions of terrestrial clouds
on a global scale can be obtained only with satellite remote sensing systems. Different spectrometers and
radiometers , deployed on space-based platforms, measure the angular and spectral distribution of intensity
and polarization of reflected solar light (see e.g. Deschamps et al., 1994). Generally, the measured values
depend both on geometrical and microphysical characteristics of clouds. Thus, the inherent properties of
clouds can be retrieved (at least in principle) by the solution of the inverse problem. The accuracy of the
retrieved values depends on the accuracy of measurements and the accuracy of the forward radiative transfer
model.

In particular, it is often assumed that clouds can be represented by homogeneous and infinitely extended in the
horizontal direction plane-parallel slabs (Kokhanovsky et al., 2003; Rossow, 1989). The range of applicability
of such an assumption for real clouds is very limited as is shown by observations of light from the sky on
a cloudy day. For example, the retrieved cloud optical thickness τ is apparently dependent on the viewing
geometry (Loeb and Davies, 1996). This, of course, would not be the case for an idealized plane-parallel
cloud layer. However, both the state-of-art radiative transfer theory and computer technology are not capable
to incorporate 3-D effects into operational satellite retrieval schemes. As a result, cloud parameters retrieved
should be considered as a rather coarse approximation to reality.

However, even such limited tools produce valuable information on terrestrial clouds properties. For example,
it was confirmed by satellite measurements that droplets in clouds over oceans are usually larger than those
over land . This feature, for instance, is of importance for the simulation of the Earth’s climate .

Concerning trace gas retrievals in the UV/VIS, clouds are considered as “contamination”. The part of the
column, which is below the top of the clouds, cannot be detected by the satellite. This ghost vertical column
has to be estimated from climatological vertical profiles and is added to the vertical column retrieved. It is
determined by integrating the profile from surface up to the cloud top height. Partial cloudiness within the field
of view can be taken into account using fractional cloud cover.

The Semi-Analytical CloUd Retrieval Algorithm (SACURA) is used in the SGP OL1b-2 to retrieve the cloud
top height and the cloud optical thickness. Cloud top height is derived from measurements in the oxygen A
absorption band as recommended by (Yamomoto and Wark, 1961). In addition, we retrieve the cloud geomet-
rical thickness from the fit of the measured spectrum in the oxygen A-band and optical thickness using the
wavelength 755 nm outside of the band.

3.1.2. Detailed Description

3.1.2.1. Cloud Top Height

The determination of the cloud top height h using SACURA is based on the measurements of the top-of-
atmosphere (TOA) reflection function R in the oxygen A-band (Rozanov and Kokhanovsky, 2004). The cloud
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reflection function is extremely sensitive to the cloud top height in the centre of the oxygen absorption band.
To find the value of h, we first assume that the TOA reflectance R can be presented in the form of a Taylor
expansion around the assumed value of cloud top height equal to h0 :

R(h) = R(h0) +

∞∑
i=1

ai(h− h0)i (3.1)

where ai = R(i)(ho)/I. Here R(i)(h0) is the ith derivative of R at the point h0. The next step is the linearisation,
which is a standard technique in the inversion procedures (Rodgers, 2000; Rozanov et al., 1998). We found
that the function R(h) is close to a linear one in a broad interval of the argument change (Kokhanovsky and
Rozanov, 2004). Therefore, we neglect non-linear terms in equation (3.1). Then it follows:

R = R(h0) +R′(ho) · (h− h0) (3.2)

where R′ = dR
dh . We assume that R is measured at several wavelengths in the oxygen A-band. Then instead

of the scalar quantity R we can introduce the vector Rmes with components R(λ1), R(λ2), · · ·R(λn). The same
applies to other scalars in equation (3.1). Therefore, it can be written in the following vector form:

y = ax (3.3)

where y = Rmes − R(h0), a = R′(h0) , and x = h − h0. Note that both measurement and model errors are
contained in equation (3.3). The solution x̂ of the inverse problem is obtained by the minimizing the following
cost function:

Φ = ‖y − ax‖2 (3.4)

where ‖· · · ‖ means the norm in the Euclid space of the correspondent dimension. The value of x̂, where the
function Φ has a minimum can be represented as the scalar product in the Euclid space

x̂ =

∑n
i=1 aiyi∑n
i=1 a

2
i

(3.5)

with n being the number of spectral channels where the reflection function is measured.

Therefore, from known values of the measured spectral reflection function Rmes (and also values of the calcu-
lated reflection function R and its derivative R′ at h = h0) at several at wavelengths, the value of the cloud top
height can be found from equation (3.5) and equality: h = x̂ + h0. The value of h0 can be taken equal to 1.0
km, which is a typical value for low level clouds. The main assumption in our derivation is that the dependence
of R on h can be presented by a linear function on the interval x (Kokhanovsky and Rozanov, 2004). An error
of 0.25 km can be expected for full convergence; otherwise 0.5 km.

3.1.2.2. Cloud Optical Thickness

Cloud optical thickness τ , together with the cloud fraction c, has a significant impact on the transfer of solar and
infra-red radiation through a cloudy atmosphere. τ is defined as the cloud extinction coefficient kext integrated
across the cloud vertical extent. For a vertically homogeneous cloud with geometrical thickness L, τ = kextL.

For optically thick clouds, the optical thickness in the visible is estimated from the following equation (Kokhanovsky
et al., 2003):

R(µ, µ0, φ) = R0∞(µ, µ0, φ)− tcloudK0(µ)K0(µ0), (3.6)

where R(µ, µ0, φ) = πI↑(µ, µ0, φ)/µ0F0 is the cloud reflection function as measured from the satellite, µ0 and µ
are the cosines of the solar and observation zenith angles, φ is the relative azimuth, F0 is the top-of-atmosphere
irradiance on the plane perpendicular to the incident light beam, and I↑ is the intensity of the reflected light,
tcloud = 1/(a+ bτ). Here tcloud is the cloud spherical transmittance, a = 1.07 and b = 0.75(1− g).

Assuming a given cloud model, e.g., spherical particles and a polydisperse distribution with a given effective
radius of droplets, aef , or predefined ice crystals shapes and size distributions, the escape function K0(µ),
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and the reflection function for a semi-infinite layer R0∞ are pre-calculated and stored in look-up-tables (LUTs).
Approximate equations for these functions can be used as well. In particular, a good approximation for K0(µ)
is:

K0(µ) =
3

7
(1 + 2µ). (3.7)

One derives:

τ =
1

b

[
K0(µ)K0(µ0)

R∞(µ, µ0, φ)−R(µ, µ0, φ)
− a
]
. (3.8)

This equation is used in SACURA for cloud optical thickness retrievals. It follows from this equation that
retrievals of τ for very thick clouds (R → R∞) are highly uncertain and small errors (e.g., calibration errors)
in the measured reflection function will lead to large errors in the retrieved cloud optical thickness. Often, a
limiting value of cloud optical thickness is used in the retrieval process e.g., 100, as most clouds, but certainly
not all have optical thickness below 100.

3.2. Cloud Fraction

3.2.1. Introduction

The basic idea in OCRA (Optical Cloud Recognition Algorithm Loyola and Ruppert, 1998) is to decompose
optical sensor measurements into two components: a cloud-free background and a remainder expressing the
influence of clouds, i.e.

R = RCF +RC (3.9)

where R is the reflectance and the indices CF and C indicate the cloud-free component and the cloudy
component respectively. The reflectance for a given location (x, y), and wavelength λ can be defined as

R(x, y, λ) =
I(x, y, λ)

I0(λ) · cos θ0 · cos θ
(3.10)

with

I Upwelling radiance into the field of view

I0 Solar irradiance

θ Viewing Zenith angle

θ0 Solar Zenith Angle

The key to the algorithm is the construction of the cloud-free composite that is invariant with respect to the
atmosphere, and to topography and solar and viewing angles. The comparison of the spatially resolved cloud-
free scenes and the measurement gives then the cloud fraction for a given scene. As for the GOME processor,
in SCIAMACHY PMD data are used to determine the cloud fraction. These have the advantage that they
have a higher spatial resolution than the spectrally resolved measurements (≈ 7 x 30 km). The steps for the
calculation of the cloud fraction are

1. Generation of a database with the cloud-free composite by

a) Extracting PMD signals and calculating a relative reflectance

b) Find cloud-free scenes
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c) Grid data

2. Calculation of cloud fraction

a) Determine offset and scaling factor

b) For each measurement, sum up signal of all PMDs and compare with cloud-free composite to de-
termine the cloud fraction

c) For each measurement, average over subpixels

3.2.2. Generation of the cloud-free composite

In previous versions of the SCIAMACHY data processor the GOME cloud-free composite database was used.
Starting from the version 5 of the processor PMD measurements of SCIAMACHY were used to build a database
of cloud-free measurements. First the PMD values of the Earth and Sun measurements were extracted from
Level 1b data (version 6.03, the latest available version) in the time range from 2003 to 2007. Earth measure-
ments are downsampled to 32 Hz in the Level 1b from the original 40 Hz while the sun measurements still
have the original sampling. Additionally, the degradation of the instrument has to be corrected:

RPMD =
PMDEarth

PMDSun
· mPMD

mPMDcal
· 32Hz

40Hz
(3.11)

with PMDEarth/Sun as the signal of PMD Earth and Sun measurements and mPMD(cal) as the degradation
correction factor for Earth and Sun PMD measurements. For version 6 of the processor the new m-factors
derived from the scan mirror model (Slijkhuis and Lichtenberg (2014)) were used. The above equation holds
for all PMDs. In order to determine if the observed scene is cloud-free, the saturation S of the PMD reflectances
is calculated :

S =
max(RPMD2, RPMD3.RPMD4)−min(RPMD2, RPMD3, RPMD4)

max(RPMD2, RPMD3, RPMD4)

= 1− min(RPMD2, RPMD3, RPMD4)

max(RPMD2, RPMD3, RPMD4)
(3.12)

with RPMDn as the signal in PMD number n. The saturation was preferred over the colour distance (that is
used for the GOME cloud-free composite), because it can be easily expanded for a future separation of cloudy
scenes from ice or snow covered surfaces. Both methods are completely equivalent, since they are a measure
for the difference between a coloured scene and achromatic (white/grey/black) scene. Totally clouded scenes
have a low saturation near 0, because they are white in the wavelength range measured by PMDs 2-4 and the
signals in all of them will be similar. A cloud-free scene is indicated by a large saturation.

The database with the cloud-free composite is build on a grid with a resolution of 0.36◦ × 0.36◦ (latitude x
longitude). Each grid point is initialised with a saturation value of 0 (fully clouded). The database contains the
following values:

1. Latitude and longitude of the grid point

2. Centre latitude and longitude of the measurement with the highest saturation so far

3. Reflectance values for all PMDs divided by the solar zenith angle

4. Solar Zenith angle

5. Saturation

6. Colour distance from the white point (see Loyola, 2000)
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For each month in the considered time range the saturation values of the observations is sequentially cal-
culated. If the measured saturation is larger than the one on the nearest grid point in the database and
thus indicating that the observed scene is less cloudy than the one currently in the database, all values in
the database for this grid point are replaced with those of the current measurements. The resulting monthly
databases are combined to one database after all data are processed. In future versions of the processor the
monthly databases can be used to build a seasonally dependent cloud-free composite to decrease the impact
of colour variations of the surface over time.

3.2.3. Determination of the cloud fraction

For a given PMD observation the cloud fraction cfrac can now be determined as

cfrac =

√√√√ 4∑
i=2

[(
RPMDi −RcfPMDi

)2

− αi
]
· βi (3.13)

with

RPMDi Observed reflectance of PMD i

RcfPMDi Reflectance for the cloud-free case from the database

αi Offset for PMD i

βi Scaling factor for PMD i

The offsets correct for the fact that the measured reflectances can be smaller than the cloud-free reflectance
in the database. Possible reasons can be seasonal change of vegetation or ocean colour. Since the sign of
the difference RPMDi −RcfPMDi is lost, cloud-free areas with lower brightness will give the same cloud fraction
as slightly clouded scenes. By setting the offset to a large enough value the cloud fraction can be corrected for
this effect. Using a small subset of the reflectance data set, the offset αi was set to the largest negative value
of the reflectance difference found in the set. Note that a future extension of the database to include seasonal
variations can minimise the influence of the colour changes.

The scaling factors βi correct for the fact that the albedo of observed clouds is not uniform but depends the
illumination geometry, the thickness of the cloud, the size of the water droplets and other parameters. In
effect this leads to different reflectances for scenes with the same cloud cover and eventually to different cloud
fractions. In the current algorithm, only one scaling factor is available for each PMD, independent of season
and geographical coordinates. In order to minimise errors in the calculation of the cloud fraction, the scaling
factors were determined by a comparison with FRESCO+ (Wang et al., 2008).

Version 6 also contains the cloud ice discrimination SPICI using the algorithm as described in Krijger et al.
(2005). With this algorithm cloud free subpixels above ice are now properly detected1. SPICI employs a
similar method as OCRA to determine the colour of the sub-pixel. It uses additionally PMD D (800 -900 nm) to
discriminate clouds from ice.

3.2.4. Future improvements

Since the calculation and extraction of SCIAMACHY data from several years is rather time consuming, possible
future algorithm improvements were already considered during the generation of the cloud-free composite.
These improvements include:

â Determination of the offset using the complete data set and not only a subset

â Independent determination of the scaling factors using a composite of totally clouded scenes

â Introduction of seasonal and geographically dependent offsets and scaling factors
1ice and cloud were not distinguishable by their colour using only PMDs in the visible range
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4. Absorbing Aerosol Index

4.1. Overview

The Absorbing Aerosol Index (AAI) indicates the presence of elevated absorbing aerosols in the Earth’s atmo-
sphere. The aerosol types that are mostly seen in the AAI are desert dust and biomass burning aerosols. The
AAIs described in this ATBD are derived from the reflectances measured by SCIAMACHY at 340 and 380 nm.

4.1.1. Retrieval Settings

The wavelength pair used is [340, 380] nm. Both wavelengths originate from cluster 9 of the SCIAMACHY
spectrum. The associated reflectances at these two (centre) wavelengths are determined by taking the average
of all the reflectances that fall inside a 1-nm wavelength bin around the respective centre wavelengths.

4.2. Detailed Description

4.2.1. Definition of used geometry

Figure 4.1 defines, in a graphical way, the angles that are used to specify the viewing and solar directions. An
imaginary volume element that is responsible for the scattering of incident sunlight is located in the origin of
the sphere. The solar direction is described by the solar zenith angle θ0 and the solar azimuth angle φ0. The
viewing direction is defined by the viewing zenith angle θ and the viewing azimuth angle φ.

φ-φ0

φ0

θ

θ0

φ

Θ

Sun

local zenith

incident
sunlight

scattering
plane

local
meridian
plane

scattered
lightlocal

horizon

Figure 4.1.: Definition of viewing and solar angles.
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We make use of a right-handed coordinate frame, meaning that φ−φ0 as sketched in figure 4.1 is positive. We
followed the same definition of φ and φ0 as is present in the SCIAMACHY data. However, there is no need to
specify it because only the azimuth difference φ − φ0 is of relevance. For completeness, we mention that the
single scattering angle, under this definition of angles, can be calculated from

cos θ = − cos θ cos θ0 + sin θ sin θ0 cos(φ− φ0) (4.1)

4.2.2. Definition of the Residue

The Absorbing Aerosol Index (AAI) is a dimensionless quantity which was introduced to provide information
about the presence of UV-absorbing aerosols in the Earth’s atmosphere. It is derived directly from another
quantity, the residue, which is defined by Herman et al. (1997) as

r = −100 · {10log(
Rλ
Rλ0

)obs −10 log(
Rλ
Rλ0

)Ray} (4.2)

In this equation, Rλ denotes the Earth’s reflectance at wavelength λ. The superscript obs refers to reflectances
which are measured by, in this case, SCIAMACHY, while the superscript Ray refers to modelled reflectances.
These modelled reflectances are calculated for a cloud-free and aerosol-free atmosphere in which only Rayleigh
scattering, absorption by molecules, Lambertian surface reflection as well as surface absorption can take
place. The reflectance is defined as

R =
πI

µ0E
(4.3)

where I is the radiance reflected by the Earth atmosphere (in Wm−2nm−1sr−1), E is the incident solar irradi-
ance at the top of the atmosphere perpendicular to the solar beam (in Wm−2nm−1), and µ0 is the cosine of
the solar zenith angle θ0. As for the wavelengths involved, the wavelengths λ and λ0 must lie in the UV, and
were set to 340 and 380 nm, respectively, for SCIAMACHY.

The Rayleigh atmosphere in the simulations is bounded below by a Lambertian surface having a wavelength
independent surface albedo As, which is not meant to represent the actual ground albedo. It is obtained from
requiring that the simulated reflectance equals the measured reflectance at λ0 = 380 nm:

Robsλ0
= RRayλ0

(As) (4.4)

The surface albedo found in this way is used to calculate RRayλ , so one assumes that the surface albedo is
constant in the wavelength interval [λ, λ0], which is true for most cases. Note that equation (4.2) can now be
reduced to

r = −100 ·10 log

(
Robsλ
RRayλ

)
(4.5)

4.2.3. Definition of the AAI

The importance of the residue, as defined above, lies in its ability to effectively detect the presence of absorbing
aerosols even in the presence of clouds. When a positive residue (r > 0) is found, absorbing aerosols were
detected. Negative or zero residues on the other hand (r ≤ 0), suggest an absence of absorbing aerosols.
For that reason, the AAI is defined as equal to the residue r where the residue is positive, and it is not defined
where the residue has a negative value.
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4.2.4. Calculation of the Residue

The first step in the calculation of the residue involves finding the artificial surface albedo As for which the
measured SCIAMACHY reflectance at the reference wavelength λ0 = 380 nm equals the simulated reflectance
at the same wavelength (cf. equation 4.4). The simulated reflectances are found from a collection of Look-Up
Tables (LUTs). These LUTs are described in section 4.2.5. The simulations basically describe a cloud-free,
homogeneous atmosphere which is bounded below by a Lambertian surface. The contribution of the surface
to the TOA reflectance may be separated from that of the atmosphere according to the following formula
(Chandrasekhar, 1960):

R(µ, µo, φ− φ0, As) = R0(µ, µo, φ− φ0) +
Ast(µ)t(µo)

1−Ass∗
(4.6)

In this equation, the first term R0 is the path reflectance, which is the atmospheric contribution to the re-
flectance. The second term is the contribution of the surface with an albedo As. The parameter t is the total
atmospheric transmission for the given zenith angle, s∗ is the spherical albedo of the atmosphere for illumi-
nation from below, µ is the cosine of the viewing zenith angle θ, and µ is the cosine of the solar zenith angle
θ0 defined earlier. Using equation (4.6) and by demanding that the simulated reflectance RRayλ0

equals the
measured reflectance Robsλ0

at 380 nm, we find the following expression for the surface albedo As:

As =
Robsλ0

−R0
λ0

t(µ)t(µ0) + s∗(Robsλ0
−R0

λ0
)

(4.7)

In this equation,R0
λ0

denotes the simulated reflectance for the actual atmosphere, but without surface reflection.
R0 can be expanded in a Fourier series. In our case, with a Rayleigh atmosphere, the expansion is exact with
only three terms in φ− φ0 . We have

R0 = a0 +

2∑
i=1

2ai(µ, µ0) cos i(φ− φ0) (4.8)

The idea is that with a proper LUT of ai, t(µ) and s∗, we can easily calculate R0,As and Rλ. Some interpolation
is necessary. In this case we have to interpolate over µ and µ0 and over the surface height hs.

4.2.5. Look-up Tables

Using the radiative transfer code DAK (Doubling-Adding KNMI, de Haan et al., 1987), Look-Up Tables (LUTs)
were created. The LUTs contain the parameters ai, t(µ) and s∗ as well as the total Ozone column, as defined
in section 4.2.4. The definition of the coefficients ai is such that the path reflectance R0 may be reconstructed
from them according to

R0 = a0 + 2a1 cos(φ− φ0) + 2a2 cos 2(φ− φ0) (4.9)

Adding the surface contribution requires equation (4.6) and the parameters t(µ) and s∗ . The simulations were
done for cloud-free situations. Aerosols were not included either. The LUTs were prepared as a function of µ
and µ0, surface height hs and total ozone column. The coefficients were calculated for 42 Gaussian distributed
µ and µ0 points, and for 9 surface heights hs ranging from 0 to 8 km in 1 km steps. The ozone total column
retrieved by SCIAMACHY for the given observation is used for the look-up of the correct values in the LUT.

4.2.6. Degradation Correction

Since the algorithm relies on absolute values for the reflectance, the degradation has to be corrected. The
residue increased by, on average, more than 2.5 index points over the last years, and an analysis indicated
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that the increase could be completely explained by the instrument degradation which was recorded by instru-
ment Light Path Monitoring (LPM) measurements (which are taken on a regular basis). In the processor, the
degradation is now corrected during the internal Level 1b to 1c step . Details of the degradation correction can
be found in Slijkhuis and Lichtenberg (2014) and Krijger (2011).
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5. SDOAS Algorithm General Description

The vertical column retrieval algorithm GDOAS was developed at BIRA-IASB specifically for GOME on the
basis of the well-established and widely used DOAS method (Platt and Stutz, 2008). GDOAS was implemented
into the GOME data processor (GDP) version 4. The GDOAS adaptation to the SCIAMACHY instrument was
renamed SDOAS and has also been implemented in the SCIAMACHY Ground Processor L12 (from version 3)
to have an accuracy similar to the one obtained with GDP4.

This section presents a brief description of the DOAS method that involves two steps: the slant column retrieval
and the conversion into vertical columns using calculated air mass factors. The detailed description of GDOAS
is provided in(Spurr et al., 2004; Van Roozendael et al., 2006; Lerot et al., 2009).

5.1. Slant column retrieval

The Lambert-Beer extinction law applied to the earthshine measurements is the basis for the slant column
retrieval from satellite measurements. A direct solar irradiance measurement void of atmospheric absorption
structures is used as the background spectrum. The validity of this law is limited to the weak absorption,
which is generally true in case of the atmospheric trace gas absorbers. However, in very particular conditions,
the DOAS approximation may be not verified (e.g. in the UV for high solar zenith angles due to the strong
ozone absorption or in case of high SO2 concentrations during volcanic eruptions). In SDOAS it is generally
the logarithms of intensities (so-called "optical densities") that are being used. The effects of the broadband
molecular and aerosol scattering are represented in the form of the low-order polynomials (typically of the 2nd
or 3rd degree). The main equation used for the DOAS retrieval is then

Y (λ) = ln

(
Iλ(Θ)

I0
λ(Θ)

)
= −

∑
g

Eg(Θ) · σg(λ)−
n∑
j=0

αj (λ− λ∗)j − αRσR(λ) (5.1)

with

Iλ(Θ) Earth radiance at wavelength λ for the geometrical path Θ

I0
λ Solar irradiance

Eg Effective slant column density of gas g

σg Differential absorption cross-section of gas g

λ∗ Reference wavelength for closure polynomial

σR Ring reference spectrum

αR Scaling parameter for Ring spectrum

The DOAS retrieval consists in a minimization of the weighted least squares difference between measured and
calculated optical densities Y(λ) in the spectral interval appropriately selected for the trace gas under study.
To calculate optical density, reference absorption cross-sections are provided by independent measurements
or are pre-calculated. For instance, the Ring effect caused by the inelastic Raman scattering is treated as a
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pseudo-absorber. The corresponding Ring spectrum is usually defined as a (logarithmic) ratio between the
radiance spectra with and without inelastic Raman scattering (Chance and Spurr, 1997).

Two measurements of the solar irradiance are realized daily using the two diffusers (ESM and ASM) mounted
on the instrument. The algorithm uses the most recent update of the sun spectrum measured by one of the
two diffusers, depending on the trace gas to retrieve. The wavelength calibration of the irradiance spectrum
is further improved using a cross-correlation procedure involving a high-resolution reference solar spectrum.
In addition, to correct for possible distortion of the wavelength grid (e.g. due to the Doppler effect caused by
the satellite movement), the wavelength grid of the earthshine spectrum is allowed to be shifted in the DOAS
procedure.

The retrievals performed in the channel 2 of SCIAMACHY (BrO, SO2, OClO) revealed a problem, which is
due to the presence of a strong polarization-related anomaly occurring right in the middle of the channel.
This anomaly interferes with the absorption structures of the retrieved gases that leads to the non-physical
results. To reduce this polarization-related artefact, a polarization vector η (often called ETA), extracted from
the SCIAMACHY key data set, is included into the SDOAS fit procedure for some of the trace gases. Also, to
account for possible intensity offsets in the spectra, a supplementary cross-section calculated as the inverse
earthshine spectrum is fitted in the DOAS procedure. This term also corrects for some limitations of the Ring
spectrum, e.g. over bright surfaces or in regions where vibrational Raman scattering in ocean water is relevant
and is used for most minor trace species.

5.2. Vertical column retrieval

The conversion from slant to vertical column amounts is done via the AMF computation.

The AMF definition used in the SGP is the common one

A =
ln
(
Inog

Ig

)
τvert

(5.2)

with

A Air mass factor

Inog Simulated backscatter radiances without main gas

Ig Simulated backscatter radiance with main gas

τvert Vertical optical depth of the main gas

These AMFs are directly calculated on the fly with the multiple scattering radiative transfer model LIDORT
(Linearized Discrete Ordinate Radiative Transfer), without the need for large look-up tables. LIDORT assumes
the atmosphere as a stratified structure with a given number of optically homogeneous layers. For more
information about LIDORT see Spurr et al. (2001).

Since the AMF depends not only on viewing geometry and solar position but also on the wavelength and the
concentration vertical profile shape, it is calculated for each retrieved gas individually. The concentration profile
shape is generally provided by an external climatology. AMF calculation demands also an information about a
surface albedo. In the SGP it is taken from the TOMS albedo data base. Two types of calculations are possible
with the data processor:

1. An iterative approach when the total column is one of the input parameters for the selection of the profile
within the climatology. Currently, this method is only used for ozone (see below) as it is only needed for
strong absorbers.

2. A standard approach when the climatology is only based on seasonal and geographical parameters.
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For strongly varying absorbers such as SO2, the use of climatologies leads to large errors. Therefore, in
the current processor two standard AMF are calculated, one for a volcanic eruption scenario and one for a
boundary layer pollution situation. Both results are provided to the user who has to decide which value is more
appropriate for his application.

For OClO, no vertical column is calculated at all as rapid photochemistry and the change of solar zenith angle
along the light path through the stratosphere at low sun make application of the concept of vertical columns
difficult.

In general, two types of AMF are calculated: for clear sky (Aclear; from the top of the atmosphere to the ground)
and for cloudy (Acloud; from the top of the atmosphere to the cloud-top level) scenarios. The cloudy air mass
factor calculation is based on cloud parameters generated off-line by dedicated algorithms.

The vertical column is then calculated as

V =
E
MR

+ cfrac ·G ·Acloud
(1− cfrac) ·Aclear + cfrac ·Acloud

(5.3)

with

V Vertical column density

E Slant column density of main gas

MR Molecular Ring correction scale factor

cfrac Intensity weighted cloud fraction

G “Ghost column” of main gas below cloud top height

Acloud AMF to the cloud top level

Aclear AMF to the ground level

The molecular Ring correction MR is specific to total ozone retrievals (see below)). For other trace gases, this
factor is fixed to 1.

The "ghost column" is the part of the column hidden below the cloud and thus not detectable by the satellite
instrument. Therefore, for the cloudy pixels, a climatological gas column comprised between the ground and
the cloud top needs to be added to the retrieved one. The "ghost column" concept works reasonably well for
trace gases with more or less constant tropospheric distributions and prevents the cloud-induced "jumps" in
retrieved vertical column fields. For strongly varying species such as SO2, no ghost column is applied.

5.3. Nadir Ozone Total Column Retrieval

5.3.1. Motivation

The role of ozone in the Earth’s atmosphere is very important since it absorbs solar UV photons, protecting
the biosphere from these harmful radiations. Also, the radiation absorption by the high concentrations of
ozone in the stratosphere leads to an heating of this part of the atmosphere. This temperature increase in the
stratosphere makes this region very stable and influences the dynamic of the whole atmosphere. The discovery
of the ozone hole above Antarctica during spring time was one of the most obvious changes observed in Earth’s
atmosphere. Although the Montreal Protocol and its amendments have regulated the production and release
of ozone depleting substances, the ozone recovery expected to occur in the next decades has to be monitored
on a long-term basis. Furthermore, climate change will have an impact on the atmospheric dynamics and
chemistry which influence the ozone concentrations. Global measurements of ozone columns can help to
better understand these interactions and consequently to better predict the timing of ozone recovery.
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Although 90% of ozone is in the stratosphere, tropospheric ozone concentrations can locally be important. In
the troposphere, ozone is a pollutant and a constituent of smog. It is also a powerful oxidizing agent and an im-
portant greenhouse gas. Total ozone measurements may be combined to stratospheric ozone measurements
to derive information on tropospheric ozone content.

5.3.2. Retrieval Settings

Ozone absorption is strongly temperature-dependent in the UV Huggins bands, and in this spectral range an
effective temperature is derived from the DOAS fitting in addition to the ozone slant column itself.

Level 1b-1c Settings
Calibration All calibrations applied
SMR D0 (Sun over ESM diffuser)
DOAS Main Settings
Fitting Interval 325 - 335 nm
Polynomial Degree 3rd order
Wavelength Shift Wavelength calibration of sun reference optimized over fitting interval by

NLLS adjustment on pre-convolved NEWKPNO atlas
Absorption Cross Sections/Fitted Curves
O3 Bogumil et al. (2003)@243 K, shifted by 0.02nm, scaled by 1.03
NO2 Bogumil et al. (2003)@243 K
O3 Difference Spectrum Difference σ243K

O3 − σ223K
O3 , shift allowed, scaled by 1.03

Ring Spectrum Calculated by convolution of the Chance and Spurr (1997) solar atlas with
RRS cross-sections of molecular N2 and O2.

Total Column Calculation: Profiles/AMF
AMF ref. Wavelength 325.5 nm
O3 Profile Column-classified ozone profile climatology TOMS V.8
Radiative Transfer Model LIDORT
Cloud Top Height SACURA
Cloud Fraction OCRA

5.3.3. Additional Details

5.3.3.1. Molecular Ring correction

In addition to the filling-in of Fraunhofer absorption solar lines, rotational Raman scattering also causes the
filling-in of atmospheric absorption features. This has to be considered for precise total ozone retrievals. It is
shown in Van Roozendael et al. (2006) that a simple correction for this molecular Ring effect can be realized
by dividing the slant column by a scale factor MR calculated with the following equation

MR = 1 + αRσR

(
1− sec(θ0)

(1− cfrac) ·Aclear + cfrac ·Acloud

)
(5.4)

with symbols as in equation 5.3 and
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αR fractional intensity of Raman light (from DOAS fit)

σR average Ring cross section calculated over the fitting interval

θ0 Solar zenith angle

It is calculated “on the fly” during the vertical column retrieval and usually not available separately.

Following a request from users, the slant column provided in the SGP product is the Ring corrected slant
column (i.e. E/MR ).

5.3.3.2. Vertical column with iterative approach

For ozone, the total column is a good proxy for the ozone profile, and column-classified ozone profile clima-
tology is useful for selecting profiles required for the radiative transfer. In GDOAS, the ozone AMF is adjusted
iteratively to reflect the actual column content as expressed by the slant column.

In the first iteration, an initial AMF A0 is computed for a given initial guess of vertical column. The vertical
column V0 is obtained, which serves as the second guess for the vertical column. This process runs until the
convergence criterion is reached, i.e. until the relative difference between consequent iterations is less than
some predefined small number.
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5.4. Nadir NO2 Total Column Retrieval

5.4.1. Motivation

The main source of NO2 in the stratosphere is microbiological soil activity. The diurnal, seasonal, and latitudinal
variation of NO2 is dominated by the equilibrium between NOx and the reservoir substances (mainly N2O5,
HNO3, ClONO2). In the troposphere, the main sources of NO2 are anthropogenic in origin, e.g. industry,
power plants, traffic and forced biomass burning. Other, but slightly less important origins comprise natural
biomass burning, lightning and microbiological soil activity. NO2 emissions have increased by more than a
factor of 6 since pre-industrial times with concentrations being highest in large urban areas.

Global monitoring of NO2 emissions is a crucial task since nitrogen oxides play a central role in atmospheric
chemistry. For example, it catalyses ozone production, contributes to acidification and also adds to radiative
forcing. The high spatial resolution of SCIAMACHY allows us performing very detailed observations of polluted
regions.

5.4.2. Retrieval Settings

Level 1b-1c Settings
Calibration All calibrations except radiometric
SMR A0 (Sun over ASM diffuser without radiometric calibration)
DOAS Main Settings
Fitting Interval 426.5 - 451.5 nm
Polynomial Degree 2nd order
Wavelength Shift Wavelength calibration of sun reference optimized over fitting interval by

NLLS adjustment on pre-convolved NEWKPNO atlas
Absorption Cross Sections/Fitted Curves
NO2 Bogumil et al. (2003)@243 K
O3 Bogumil et al. (2003)@243 K, shifted 0.025 nm
O2- O2 Greenblatt et al. (1990); Wavelength axis corrected by Burkholder
H2O Generated from HITRAN database
Ring Spectrum Calculated by convolution of the Chance and Spurr (1997) solar atlas with

RRS cross-sections of molecular N2 and O2.
Empirical Functions
Offset and Slope Correction Inverse Earthshine spectrum (radiance)
Total Column Calculation: Profiles/AMF
AMF ref. Wavelength 439 nm
NO2 Profile HALOE (Lambert et al., 2000)
Radiative Transfer Model LIDORT
Cloud Top Height SACURA
Cloud Fraction OCRA
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5.5. Nadir SO2 Total Column Retrieval

5.5.1. Retrieval Settings

Level 1b-1c Settings
Calibration All calibrations except radiometric
SMR A0 (Sun over ASM diffuser without radiometric calibration)
DOAS Main Settings
Fitting Interval 315 - 327 nm
Polynomial Degree 3rd order
Absorption Cross Sections/Fitted Curves
SO2 Vandaele et al. (1994)
O3 Bogumil et al. (2003)@243 K
O3 Difference Spectrum Difference σ243K

O3 − σ223K
O3

Ring Spectrum Vountas et al. (1998)
Empirical Functions
Offset and Slope Correction Inverse Earthshine spectrum (radiance)
Background Correction SCD from reference sector over the Pacific (180◦ - 220◦)
Total Column Calculation: Profiles/AMF
AMF ref. Wavelength 315 nm
SO2 Profile Anthropogenic Pollution scenario: 1 DU present from surface to 1 km height
SO2 Profile Volcanic Eruption scenario: 10 DU present in layer between 10 and 11 km
Radiative Transfer Model LIDORT
Cloud Top Height Not applied, ghost column set to 0
Cloud Fraction Not applied

5.5.2. Additional Details

For both, the slant column computation and the total column retrieval the standard method described above
was adjusted.

5.5.2.1. Slant Column

In the slant column determination, a spectral interference at large ozone absorption (high solar zenith angle,
large ozone column) leads to unrealistic slant columns in the SO2 retrieval. To correct for this offset, the SO2

columns from a reference sector over Pacific (180◦−220◦ longitude) are subtracted from the retrieved SO2

slant columns. For determination of the offset it is assumed that no SO2 is present in the so called reference
sector over the Pacific and that the interfering effect (mainly ozone absorption) does not depend strongly on
longitude. The values from the reference sector (i.e. the assumed offsets) are stored in a database (BG_DB)
as background values.

Database Filling and Content

For optimum correction, the BG_DB should contain those measurements over the reference sector which are
closest in time to the actual measurement analysed at other longitudes. It should also have no gaps, should
not be affected by volcanic SO2 plumes or outliers and should be available in NRT.
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The orbit duration of ENVISAT is roughly 100 minutes leading to 14 orbits per day. Of these 14 orbits typically
two cross the background reference sector near the equator. For higher latitudes more crossings occur. How-
ever, as result of the gaps during limb measurements and from missing data, not all of the reference sector is
covered on each day. The BG_DB contains the nadir SO2 slant columns retrieved by the off-line processor.
It is continuously updated during processing. The values are retrieved with the same algorithm as the “regu-
lar” slant columns, their only difference is the geolocation of the ground-pixel. New values are written to the
database if

â The centre longitude is in the reference sector (currently all longitudes between 180◦ and 220◦)

â The ground-pixel is in the descending node of the orbit (i.e. on the sunlit side of the orbit).

â The RMS of the retrieval is below a limit (currently 0.007)

â The fractional cloud cover is below a limit (currently 0.5)

â At least one latitudinal bin with quality > 0 was found

â The orbit was not already used to add data to the BG_DB (duplicate entries would distort the quality
value and the averaged value)

All values obtained on the same day for a given latitude bin are averaged, weighted with their quality. Each
latitudinal bin spans 5◦ leading to 36 bins per day. In order to judge the quality of the background value, the
data base also contains a quality flag that can have values between 0 (no data) and 255 (best quality). The
quality is determined from the number of data points available for each bin and the standard deviation of the
SO2 slant columns. The quality of the background correction is written to the SCD FITFLAG. If the Background
correction is used, bit #8 is set . The quality itself is coded into three bits (#9-11), resulting into 8 values (for
the Nadir MDS format see also section A.2.1): the value 0 means no background correction was performed,
the value 7 marks the best possible correction and values in between represent intermediate quality.

Application of the Background Values

After the SO2 retrieval the slant columns are written to the MDS of the product with the offset from BG_DB
applied. The offsets depend on latitude and time. Since the database is filled continuously during the process-
ing, at the start of the processing there will always be measurements that have no corresponding (in time and
latitude) background value. In this case the following method is used to obtain a background correction:

1. Search the database alternately backward and forward in time, until values from the neighbouring latitude
bins are found.

2. Interpolate between the 2 neighbouring SCD offsets to the current latitude.

3. Interpolate between the 2 corresponding quality flags; a latitude near a missing latitude bin thus will
automatically result in an SCD offset and a quality of or near 0.

4. Subtract the offset from the measurement.

5.5.2.2. Vertical Column

As already mentioned, VCD calculation was adjusted as well. Since SO2 is present only sporadically, the use
of climatological values for the vertical profiles is not possible. Therefore, the approach was taken to assume
a constant profile shape for two typical scenarios:

â a profile with 1 DU of SO2 between a 0 and 1 km simulating an anthropogenic pollution event;

â a profile with 10 DU of SO2 between a 10 and 11 km simulating a volcanic eruption.

Accordingly, two types of SO2 vertical columns - anthropogenic and volcanic - are computed. Both results are
written into two different MDSs of the level 2 product.

The second adjustment concerns the treatment of clouds in the retrieval. The ghost column approach that
corrects for column parts hidden below clouds (see section 5.2) can lead to meaningless results in case of
SO2. Contrary to O3, NO2 and BrO, the vertical atmospheric SO2 distribution is neither known nor predictable.
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Both of the main sources of SO2, the volcanic eruptions and the anthropogenic pollution events, are sporadic.
Therefore, assuming that SO2 is present below every cloud will give incorrect results. Consequently, no ghost
column is added to retrieved SO2 vertical columns. In order to stay consistent with this approach, for the AMF
factor always Aclear is used. The users should be advised that in some measurements SO2 might be hidden
below a cloud resulting in too low SO2 vertical columns.

5.6. Nadir BrO Total Column Retrieval

5.6.1. Motivation

Bromine monoxide (BrO) is a key atmospheric trace gas playing a major role as catalyst of the ozone de-
struction in both the stratosphere and the troposphere. The main sources of bromine in the stratosphere
are long-lived and short-lived brominated organic compounds of natural and anthropogenic origin (CH3Br and
halons). In the troposphere, large emissions of inorganic bromine have been observed in the polar boundary
layer when frost flowers on the surface of the ocean vanish at the end of the winter. These bromine explosion
events also result in efficient tropospheric ozone depletion. Finally, an other source of inorganic bromine in the
troposphere and possibly in the stratosphere is the release by active volcanoes.

5.6.2. Retrieval Settings

Level 1b-1c Settings
Calibration All calibrations except radiometric
SMR A0 (Sun over ASM diffuser without radiometric calibration)
DOAS Main Settings
Fitting Interval 336 - 351 nm
Wavelength Shift Wavelength calibration of sun reference optimized over fitting interval

by NLLS adjustment on pre-convolved NEWKPNO atlas
Polynomial Degree 3rd order
Absorption Cross Sections/Fitted Curves
NO2 Bogumil et al. (2003)@ 243 K
O3 Bogumil et al. (2003)@ 243 K, shifted
O2-O2 Greenblatt et al. (1990), wavelength axis corrected by Burkholder
BrO Fleischmann et al. (2004)@223 K
O3 Difference Spectrum Difference σ243K

O3 − σ223K
O3 , shifted

Ring Spectrum Vountas et al. (1998)
Empirical Functions
Polarisation Feature Correction η Nadir included in the fit
Offset and Slope Correction Inverse Earthshine spectrum
Total Column Calculation: Profiles/AMF
AMF ref. Wavelength 343.5 nm
BrO Profile Climatology based on the 3-D CTM BASCOE from BIRA (Theys et al.,

2008)
Radiative Transfer Model LIDORT
Cloud Top Height SACURA
Cloud Fraction OCRA
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5.7. Nadir OClO Slant Column Retrieval

5.7.1. Retrieval Settings

Level 1b-1c Settings
Calibration All calibrations except radiometric
SMR A0 (Sun over ASM diffuser without radiometric calibration)
DOAS Main Settings
Fitting Interval 365 - 389 nm
Polynomial Degree 4th order
Absorption Cross Sections/Fitted Curves
NO2 Bogumil et al. (2003)@223 K
O4 Hermans et al. (1999)
OClO Kromminga et al. (2003)
Ring Spectrum Vountas et al. (1998)
Undersampling Constant Undersamlping Spectrum calculated by IUP
Empirical Functions
Offset and Slope Correction Inverse Earthshine spectrum (radiance)
Polarisation Feature Correction η Nadir included in the fit
Intensity Correction Ratio Ratio of cloudy and cloud-free measurements calculated by IUP

5.7.2. Additional Details

The OClO retrieval in SDOAS is also changed with respect to the standard approach: an interference, which
so far could not be explained, can lead to unrealistically large OClO columns over bright surfaces and clouds.
Possible reasons are insufficient correction of the Ring effect of problems in the lv1 data, e.g. from instrument
stray light, detector non-linearities or detector memory effects. To correct for this artefact, an empirical function
(the ratio between two measurements - one over a bright cloud and another from a close clear pixel) is included
into the fit procedure. Experience shows, that inclusion of this function can reduce artefacts over bright surfaces
to a high degree. This empirical intensity correction ratio spectrum is sometimes referred to as "magic ratio".

5.8. Nadir HCHO Total Column Retrieval

5.8.1. Motivation

Formaldehyde (H2CO) and glyoxal (CHOCHO) are formed during the oxidation of the volatile organic com-
pounds (VOCs) emitted by plants, fossil fuel combustion, and biomass burning. Due to a rather short lifetime
of formaldehyde and glyoxal, their distribution maps represent the emission fields of their precursors, VOCs.
Additionally, HCHO could also be used as a tracer for carbonaceous aerosols. This information will contribute
to understanding of biogenic emissions, biomass burning, and pollution.
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5.8.2. Retrieval Settings

Level 1b-1c Settings
Calibration All calibrations except radiometric
SMR A0 (Sun over ASM diffuser without radiometric calibration)
DOAS Main Settings
Fitting Interval 328.5 - 346 nm
Polynomial Degree 5th order
Absorption Cross Sections/Fitted Curves
NO2 Vandaele et al. (1998)
O3 Brion et al. (1998)@228 & 243 K
HCHO Meller and Moortgat (2000)@298 K
BrO Fleischmann et al. (2004)@223 K
OClO Bogumil et al. (2003)@293 K

Ring Spectrum
SCIAMACHY irradiance of 20030329, KPNO solar spectrum, Gaussian slit
function

Undersampling Constant Undersamlping Spectrum calcculated by BIRA
Empirical Functions
Polarisation Feature Correction η and ς Nadir included in the fit
Offset and Slope Correction Inverse Earthshine spectrum (radiance)
Background Correction SCD from reference sector over the Pacific (180◦ - 220◦)
Total Column Calculation: Profiles/AMF
AMF ref. Wavelength 340 nm
HCHO Profile IMAGES (Müller and Brasseur (1995))
Radiative Transfer Model LIDORT
Cloud Top Height SACURA
Cloud Fraction OCRA

5.8.3. Additional Details

Three successive steps are needed to retrieve HCHO total columns from SCIAMACHY nadir spectra: the slant
column retrieval, the air mass factor calculation and a post-correction based on the slant columns retrieved
over the Pacific Ocean and on the a-priori HCHO profiles.

For the AMF calculation, a-priori concentrations profiles are taken from the CTM IMAGES (resolved monthly
and 2° X 1.25°).

Zonally and seasonally dependent artefacts due to interferences with BrO and ozone are strongly reduced
by the reference sector method, which is applied in the same way as for the SO2. After the reference sector
correction slant columns are converted into a vertical column

V CD =
SCD − SCD0

AMF
+ V CD0 (5.5)

VCD0 represents the climatological HCHO vertical column in the reference sector at the latitude of the mea-
surement. The climatological vertical column database is built by integrating the appropriate climatological
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concentration profiles within the reference sector. In this database, the different climatological columns coming
from different profiles with different longitudes for the same latitude are averaged. VCD0 is obtained via an
interpolation scheme in the a-priori column database (as a function of the latitude and time).

Contrary to a majority of other nadir products formaldehyde measurements are not provided for pixels with
solar zenith angle larger than 60°.

5.8.4. User warning

Formaldehyde vertical columns from all pixels are written into the product, regardless of their cloud fraction. It
is strongly advised to apply a cloud filtering to the formaldehyde vertical columns. It is to be emphasized that
vertical columns of pixels with cloud fraction ≤ 40% represent actual concentration of formaldehyde. For larger
cloud fractions the information content below the cloud altitude is weak because the column is dominated by a
climatological information.

5.9. Nadir CHOCHO Total Column Retrieval

5.9.1. Retrieval Settings

Level 1b-1c Settings
Calibration Uncalibrated data: only dark current (leakage), memory effect and etalon

correction applied
SMR A0 (Sun over ASM diffuser without radiometric calibration)
DOAS Main Settings
Fitting Interval 435 - 457 nm
Polynomial Degree 4th order
Absorption Cross Sections/Fitted Curves
CHOCHO Volkamer et al. (2005)
NO2 Bogumil et al. (2003)@223 K
O3 Bogumil et al. (2003)@273 K
O4 Greenblatt et al. (1990)
H2O liquid Pope and Fry (1997)
Ring Spectrum Vountas et al. (1998)
Empirical Functions
Offset and Slope Correction Inverse Earthshine spectrum (radiance)
Background Correction SCD from reference sector over the Pacific (180◦ - 200◦)
Total Column Calculation: Profiles/AMF
AMF ref. Wavelength 446 nm
CHOCHO Profile IMAGES (Müller and Brasseur (1995))
Radiative Transfer Model LIDORT
Cloud Top Height SACURA
Cloud Fraction OCRA
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5.9.2. Additional Details

For the retrieval of glyoxal total columns, the DOAS method is used including an offset correction by means of
the reference sector method (as in cases of sulphur dioxide and formaldehyde total columns). The only differ-
ence is that the offset correction value for glyoxal does not depend on latitude. Another important peculiarity
of the glyoxal post-correction scheme is the size of the reference sector: whereas it extents from pole to pole
and between 140°W and 180°W for SO2 and HCHO, it extents only between 160°W and 180°W for glyoxal.

Vertical profiles of glyoxal for AMF calculations are taken from the IMAGES climatology. This climatology
contains profiles of formaldehyde as well as those of glyoxal with a temporal resolution of 1 month and a
spatial resolution of 2°lat x 1.25°lon.

5.9.3. User warning

For glyoxal the same data policy as for formaldehyde is applied: vertical columns from all pixels are written into
the product. In case of glyoxal it is recommended to use the vertical columns of pixels with cloud fraction ≤
20%. For larger cloud fractions the information content is dominated by a climatological information.
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6. Water Vapour Retrieval

This chapter describes the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS)
algorithm used for the retrieval of total water vapour columns from measurements SCIAMACHY. The algorithm
has also been successfully applied to measurements of the GOME and GOME-2 instruments.

6.1. Inversion Algorithm

The AMC-DOAS algorithm (Noël et al., 1999) is based on the well-known Differential Optical Absorption Spec-
troscopy (DOAS) approach (Platt, 1994) which has been modified to handle effects arising from the strong
differential absorption structures of water vapour. The general features of this modified DOAS method are that

1. saturation effects arising from highly structured differential spectral features which are not resolved by
the measuring instrument are accounted for, and

2. O2 absorption features are fitted in combination with H2O to determine a so-called air mass factor (AMF)
correction which compensates to some degree for insufficient knowledge of the background atmospheric
and topographic characteristics, like surface elevation and clouds.

The main equation of the Air Mass Corrected DOAS method is given by:

ln

(
I

I0

)
= P − a

(
τO2

+ c · CbV
)

(6.1)

with

I, I0 Earthshine radiance and solar irradiance

P Polynomial to correct for broadband contributions (resulting e.g. from
Rayleigh and Mie scattering or surface albedo)

τO2
Optical depth of O2

CV Vertical column amount of water vapour

b, c Spectral quantities describing saturation effect and absorption

c contains the effective reference absorption cross section and the air mass factor. The scalar parameter a is
the above mentioned AMF correction factor. The quantities τO2 , b, and c are determined from radiative transfer
calculations performed for different atmospheric conditions and solar zenith angles (see Section 6.2). CV and
a are then derived from a non-linear fit. The error of the vertical column is calculated from the covariance
matrix also resulting from the fit. A typical fit result is shown in Figure 6.1
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Figure 6.1.: Example for AMC-DOAS fit results. Top: Spectral fit. Bottom: Residual

The AMC-DOAS method is applied to the spectral region between 688 nm and 700 nm because both O2 and
water vapour absorb in this region. They are the main absorbers in this spectral range, having slant optical
depths of similar strength (see Figure 6.2).

The main purpose of the AMF correction factor is to correct the retrieved water vapour column, but beside
this the AMF correction factor can be used as an inherent quality check for the retrieved data. The AMC-
DOAS retrieval assumes a cloud-free tropical background atmosphere and does not consider different surface
elevations. If the derived AMF correction is too large, this is an indication that these assumptions are not valid
(most likely because the observed scene is too cloudy or contains a high mountain area). Experience has
shown that retrieved water vapour columns for an AMF correction factor of 0.8 or higher are reliable; only these
data are distributed.

Figure 6.2.: Typical slant optical depths of water vapour and O2 in the spectral region around the AMC-DOAS
fitting window.
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6.2. Forward Model and Databases

The τO2 , b, and c parameters are spectral quantities which are taken from a precalculated data base. This
data base has been derived using the radiative transfer model (RTM) SCIATRAN (see e.g. Rozanov et al.,
2002) as a forward model. The term τO2

is determined using radiative transfer calculations with and without
O. The parameters b and c are determined from radiative transfer calculations assuming different water vapour
columns CV (see Noël et al., 1999, for further details).

The spectra for τO2
, b and c have been calculated for a set of solar zenith angles (SZAs), namely 0◦, 20◦, 40◦,

50◦, 60◦, 70◦, 80◦, 85◦, and 88◦. Based on this data set the τO2
, b, and c spectra are then interpolated during

the retrieval for the actual SZA. 88◦ is therefore the maximum SZA for which the retrieval produces reliable
results.

The following assumptions have been made for the radiative transfer calculations:

â tropical background atmosphere (MODTRAN profile)

â no clouds

â surface elevation 0 km

An example for τO2
, b and c is shown in Figure 6.3. Deviations of the real conditions from these assumptions

are handled via the retrieved AMF correction factor a.
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Figure 6.3.: Example for RTM parameters τO2 , b and c.

6.3. Auxiliary Data

Except for the RTM data base described in Section 6.2, the AMC-DOAS method does not rely on any other
external data, e.g. calibration factors derived from comparisons with ground based radio sonde measurements
as it is the case for e.g. Special Sensor Microwave Imager (SSM/I) data. The retrieved water vapour columns
therefore provide a completely independent data set.
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7. Infra-red Retrieval using BIRRA

7.1. Introduction

Nadir sounding of vertical column densities of atmospheric gases is well established in atmospheric remote
sensing. For UV instruments such as SCIAMACHY (Bovensmann et al., 1999) the analysis is traditionally
based on a DOAS–type methodology. This approach has also been successfully applied for analysis of SCIA-
MACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartograghY) near infra-red (IR) chan-
nels (see e.g. Buchwitz et al., 2007; Gloudemans et al., 2005; Frankenberg et al., 2005) and was the basis
of the BIAS (Basic Infra-red Absorption Spectroscopy) non-linear least squares algorithm (Spurr, 1998). In
addition to the column scale factors for the molecular densities a one-parameter “closure term” is fitted to ac-
count for any other effects such as (single or multiple) scattering, surface reflection or instrumental artefacts.
However, recent sensitivity studies have shown the importance of adequate modelling the instrumental slit
function; in particular an under- or overestimate of the slit function half width can have a significant impact on
the retrieved columns. Furthermore, in BIAS molecular absorption is taken into account using look–up tables
that have been calculated for a coarse altitude grid version of the US standard atmosphere (Anderson et al.,
1986) and a dated set of spectroscopic line parameters. Likewise the slant path optical depth is interpolated
from look-up tables generated for a finite set of path geometries.

In order to gain greater flexibility in the forward modelling and a more efficient and robust least squares inver-
sion, a “Beer Infra-red Retrieval Algorithm” (BIRRA) has been implemented recently (Schreier et al., 2006):

â Forward model describing radiance according to Beer’s law;

â Non-linear least squares exploiting special structure of the forward model;

â Flexible choice of additional fit parameters besides molecular columns;

â Option for ’online’ line-by-line absorption cross section computation and continua.

7.1.1. A first glimpse at near IR nadir observations

Carbon monoxide is an important atmospheric trace gas, highly variable in space and time, that affects air
quality and climate. About half of the CO emissions come from anthropogenic sources (e.g. fossil fuel com-
bustion), and further significant contributions are due to biomass burning. CO is a target species of several
space-borne instruments, e.g. AIRS, MOPITT, and TES from NASA’s EOS satellite series, and SCIAMACHY.

However, carbon monoxide retrieval from SCIAMACHY nadir observations is rather challenging: Only channel
8 from 2259 to 2386 nm features CO absorption signatures, albeit very weak and superposed by stronger
absorption lines of concurrent gases, i.e. H2O and CH4, see Figure7.1. Additionally, an ice layer on the
detector modifies the measured signal. Even worse, degradation of the detector increasingly reduces the
number of reliable pixels, i.e. only about 50 of 1024 pixels in channels 8 are useful for CO retrieval, when
using the WFM-DOAS bad/dead pixel mask. The “default” atmospheric model used in the original BIAS code
is based on the US standard atmosphere (Anderson et al. (1986)). The influence of the atmospheric model on
the vertical path transmission is shown in 7.2. Aerosols and clouds can be important in NIR radiative transfer
modelling, cf. 7.3.
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Figure 7.1.: Atmospheric transmission in channel 8. MODTRAN band model, US standard atmosphere, verti-
cal path 0 – 100km, no aerosols. The yellow bars indicate the micro-window 4282.686 – 4302.131
cm−1 as defined by the WFM–DOAS bad/dead pixel mask.
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Figure 7.2.: Comparison of vertical transmission (0 – 100km) assuming various atmospheric models.
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7.2. Forward Modelling

7.2.1. Radiative Transfer

7.2.1.1. General Considerations: Schwarzschild and Beer

For an arbitrary slant path, the intensity (radiance) I at wavenumber ν received by an instrument at position
s = 0 is given by (neglecting scattering and assuming local thermodynamic equilibrium) the (integral form of
the) Schwarzschild equation(Liou, 1980):

I(ν) = Ib(ν) T (ν, sb) −
sb∫

0

B (ν, T (s′))
∂T (ν, s′)

∂s′
ds′, (7.1)

where B is the Planck function at temperature T , and Ib is the background contribution at position sb. The
monochromatic transmission T is given according to Beer’s law by

T (ν, s) = e−τ(ν,s) = exp

− s∫
0

α(ν, s′) ds′

 (7.2)

= exp

− s∫
0

ds′
∑
m

km (ν, p(s′), T (s′)) nm(s′) ,

 (7.3)

where τ is the optical depth, α is the absorption coefficient, p is the atmospheric pressure, nm is the number
density of molecule m and km is its absorption cross section. In high resolution line–by–line models the
absorption cross section is obtained by summing over the contributions from many lines,

k(ν, z) =
∑
l

Sl(T (z)) gl(ν; ν̂l, γl(p(z), T (z))) (7.4)

where each individual line is described by the product of the temperature–dependent line strength Sl and a
normalized line shape function g describing the broadening mechanism (for simplicity corrections due to con-
tinuum effects (Clough et al., 1989) are neglected here). For the infra-red and microwave the combined effect
of pressure broadening (corresponding to a Lorentzian line shape) and Doppler broadening (corresponding to
a Gaussian line shape) can be represented by a Voigt line profile.

To compute the spectral radiance and transmission (or equivalently, the optical depth) the integrals in equa-
tions 7.1 and 7.2 have to be discretized. Note that in general the atmospheric pressure, temperature, and
concentration profiles are given only as a finite sets of data points with a typical altitude range up to about 100
km (see e.g. Anderson et al., 1986).

A common approach is to subdivide the atmosphere in a series of homogeneous layers, each described by
appropriate layer mean values for pressure, temperature, and concentrations; then transmission T is given by
the product of the layer transmissions, and the radiance can be calculated recursively (Clough et al., 1988;
Edwards, 1988) (“Curtis–Godson approach”). Obviously the integrals in Equations 7.1 and 7.2 can also be
evaluated easily by application of standard quadrature schemes (Kahaner et al., 1989).

7.2.1.2. Radiative transfer modelling of nadir near infra-red observations

In the near infra-red contributions from reflected sunlight become important, whereas thermal emission is
negligible. Furthermore scattering can be neglected for clear sky (cloud free) observations. Thus the radiative
transfer equation simplifies to

I(ν) = r Isun(ν) T↑(ν) T↓(ν) (7.5)

where r is the reflection factor and T↓ and T↑ denote the transmission between reflection point (e.g. Earth
surface) and observer and between sun and reflection point, respectively.
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The monochromatic transmission T (relative to the observer) is given according to Beer’s law by

T (ν; s) = exp[−
∫ s

0

α(ν, s′) ds′] , (7.6)

α(ν; s) =
∑
m

km(ν, s) nm(s) + α(c)(ν, s) (7.7)

where α is the volume absorption coefficient, km and nm are the absorption cross section and density of
molecule m, and α(c) the continuum absorption coefficient. Note that the absorption cross section is a function
of (altitude dependant) pressure and temperature, i.e. k(ν, z) = k

(
ν, p(z), T (z)

)
.

In the infra-red and microwave spectral range molecular absorption is due to radiative transitions between
rotational and vibrational states of the molecules. A single spectral line is characterized by its position ν̂, line
strength S, and line width γ, where the transition wavenumber (or frequency) is determined by the energies Ei,
Ef of the initial and final state, |i〉, |f〉,

ν̂ =
1

hc
(Ef − Ei) (7.8)

7.2.2. Molecular Absorption

7.2.2.1. Line strength and partition functions

The monochromatic absorption cross section for a single line is defined as the product of the line strength S
and a normalized line profile function g essentially determined by line broadening,

k(ν; ν̂, S, γ) = S · g(ν; ν̂, γ) with

+∞∫
−∞

g dν = 1 . (7.9)

For electric dipole transitions the line strength is determined by the square of the temperature dependent matrix
element of the electric dipole moment and by further factors accounting for the partition function, Boltzmann-
distribution, and stimulated emission,

S(T ) =
8π3

3hc

giIa
Q(T )

ν̂ e−Ei/kT [1− e−hcν̂/kT ] Rif · 10−36 (7.10)

here gi is the degeneracy of the nuclear spin of the lower energy state, Ia is the relative abundance of the iso-
tope1, Q(T ) is the total partition sum, Rif is the transition probability given by the matrix element of the electric

dipole operator Rif =
∣∣∣〈f | ~D|i〉∣∣∣2. A similar expression is found for the line strength of magnetic quadrupole

transitions. In both cases the ratio of line strength at two different temperatures is given by

S(T ) = S(T0) × Q(T0)

Q(T )

exp (−Ei/kT )

exp (−Ei/kT0)

1 − exp (−hcν̂/kT )

1 − exp (−hcν̂/kT0)
. (7.11)

Q(T ) is the product of the rotational and vibrational partition functions, Q = Qrot · Qvib, whose temperature
dependence are calculated from

Qrot(T ) = Qrot(T0)

(
T

T0

)β
, (7.12)

Qvib(T ) =

N∏
i=1

[1− exp(−hcωi/kT )]
−di , (7.13)

where β is the temperature coefficient of the rotational partition function, and N is the number of vibrational

1 In the HITRAN– and GEISA databases the abundances of the Earth atmosphere are used.
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modes with wavenumbers ωi and degeneracies di. Data required to calculate the vibrational partition sums
have been taken from Norton and Rinsland (1991).

7.2.2.2. Line broadening

Even with an ideal spectrometer with full spectral resolution no infinite narrow ”delta function” absorption line
could be observed. However, the natural line width which results from the finite lifetime of the excited state and
is described by a Lorentz profile, can be neglected in atmospheric spectroscopy.

Pressure (collision) broadening - Lorentz profile In case of pure pressure broadening the cross section
for a single radiative transition is essentially given by a Lorentzian line profile

gL(ν) =
γL/π

(ν − ν̂)2 + γ2
L

. (7.14)

The Lorentz half width (at half maximum, HWHM) γL is proportional to pressure p and decreases with in-
creasing temperature. In case of a gas mixture with total pressure p and partial pressure ps of the absorber
molecule the total width is given by the sum of a self broadening contribution due to collisions between the
absorber molecules and an air-broadening contribution due to collisions with other molecules,

γL(p, ps, T ) =

(
γ

(0,air)
L

p− ps

p0
+ γ

(0,self)
L

ps

p0

)
×
(
T0

T

)n
. (7.15)

The exponent n specifying the dependence of temperature is so far known for only a few transitions of the most
important molecules. The kinetic theory of gases (collision of hard spheres) yields the classical value n = 1

2 .
The self-broadening coefficient γ(self)

L is so far known for only a few transitions and will otherwise be set to the
air-broadening coefficient γ(air)

L (mostly specified for N2 and/or O2), i.e.

γL(p, T ) = γ(air)
L

p

p0
×
(
T0

T

)n
(7.16)

Typical values of air-broadening coefficients are γL ≈ 0.1p [cm/atm](see Table 2 in Rothman et al., 1987).

Doppler broadening The thermal motion of the molecules leads to Doppler broadening of the spectral lines,
which is described by a Gaussian line shape

gD(ν) =
1

γD

(
ln 2

π

)1/2

· exp

[
− ln 2

(
ν − ν̂
γD

)2
]
. (7.17)

The half width (HWHM) is essentially determined by the line position ν̂, the temperature T , and the molecular
mass m,

γD = ν̂

√
2 ln 2 kT

mc2
. (7.18)

For a typical atmospheric molecule one finds

γD ≈ 6 · 10−8 ν̂
√
T [K] for m ≈ 36 amu.

Combined Pressure and Doppler broadening

gV (ν) = gL ⊗ gD (7.19)
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Several empirical approximations for the half width (HWHM) of a Voigt line (defined by gV (ν̂ ± γV ) = 1
2gV (ν̂))

have been developed (Olivero and Longbothum, 1977). For the approximation

γV =
1

2

(
c1γL +

√
c2γ2

L + 4γ2
D

)
with c1 = 1.0692, c2 = 0.86639 (7.20)

a accuracy of 0.02% has been specified, with c1 = c2 = 1 the accuracy is in the order of one percent. A
comparison of Lorentzian, Doppler, and Voigt half width is given in Figure 7.4.

Figure 7.4.: Half widths (HWHM) for Lorentz-, Doppler- and Voigt-Profile as a function of altitude for a variety
of line positions ν. The Lorentz width is essentially proportional to pressure and hence decays
approximately exponentially with altitude. In contrast the Doppler width is only weakly altitude de-
pendent. In the troposphere lines are generally pressure broadened, the transition to the Doppler
regime depends on the spectral region. The dotted line indicated atmospheric temperature. (Pres-
sure and temperature: US Standard atmosphere, molecular mass 36 amu).

Numerical Aspects — The Voigt function It is convenient to introduce the Voigt function K(x, y) (normal-
ized to

√
π) defined by

gV(ν; ν̂, γL, γD) =

√
ln 2/π

γD
K(x, y) , (7.21)

K(x, y) =
y

π

∫ ∞
−∞

e−t
2

(x− t)2 + y2
dt , (7.22)

where the dimensionless variables x, y are defined in terms of the distance from the line centre, ν − ν̂0, and
the Lorentzian and Doppler half–widths γL, γD:

x =
√

ln 2
ν − ν̂0

γD
and y =

√
ln 2

γL

γD
. (7.23)

The Voigt function represents the real part of the complex function W (z) with z = x + iy that, for y > 0, is
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identical to the complex error function (probability function) defined by Abramowitz and Stegun (1964)

w(z) = e−z
2

(
1 +

2i√
π

∫ z

0

et
2

dt

)
= e−z

2

(
1 − erf(−iz)

)
= e−z

2

erfc(−iz) . (7.24)

The complex error function satisfies the differential equation

w′(z) = −2z · w(z) +
2i√
π

(7.25)

and the series and asymptotic expansions

w(z) =

∞∑
n=0

(iz)n

Γ
(
n
2 + 1

) (7.26)

w(z) =
i

π

∞∑
k=0

Γ
(
k + 1

2

)
z2k+1

=
i

π

(√
π

z
+ . . .

)
(7.27)

For vanishing arguments x or y one has K(0, y) = ey
2
(

1− erf(y)
)

and K(x, 0) = e−x
2

respectively, where erf

is the error function. Truncating the asymptotic expansion of the complex error function readily shows that the
wing of the Voigt profile is approximated by a Lorentzian. Further mathematical properties and relationships of
the Voigt function and complex error function can be found in the extensive review by Armstrong (1967) or in
Abramowitz and Stegun (1964).

Approximation of an arbitrary function by a rational function, i.e. the quotient PM/QN of two polynomials of
degree M and N is generally superior to polynomial approximations (Ralston and Rabinowitz, 1978). Because
of the asymptotic behaviour Equation 7.27 of the complex error function, the degree of the nominator and
denominator polynomials are constrained by N = M + 1. For M = 6 Hui et al. (1978) have developed a
complex rational approximation with a relative accuracy of 6 digits in the entire x, y plane,

w(z) =
P (z̄)

Q(z̄)
=

M∑
m=0

amz̄
m

M+1∑
n=0

bnz̄n
where z̄ = y − ix (7.28)

Numerical values for the real valued coefficients am and bn are given in Table 7.1. Note that a6 = 1/
√
π in

accordance with the asymptotic expansion Equation 7.27. Furthermore a0/b0 ≈ 1 as required by K(0, 0) = 1,
cf. Equation 7.26.

Table 7.1.: Hui et al. (1978) algorithm.

a0 = 122.607931777104326 b0 = 122.607931773875350

a1 = 214.382388694706425 b1 = 352.730625110963558

a2 = 181.928533092181549 b2 = 457.334478783897737

a3 = 93.155580458138441 b3 = 348.703917719495792

a4 = 30.180142196210589 b4 = 170.354001821091472

a5 = 5.912626209773153 b5 = 53.992906912940207

a6 = 0.564189583562615 b6 = 10.479857114260399

b7 = 1.0

Numerical Aspects — Computational Challenges The computational challenge of high resolution atmo-
spheric radiative transfer modelling is due to several facts. The summation in Equation 7.4 has to include all
relevant lines contributing to the spectral interval considered. In many line-by-line codes a cut-off wavenum-
ber of 25 cm−1 from line centre is frequently employed for truncation of line wings. Note that the widely used
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HITRAN and GEISA spectroscopic databases (Rothman et al., 2003; Jacquinet-Husson et al., 2008) list more
than a million lines of about 40 molecules in the microwave, infra-red, to ultraviolet regime, whereas the JPL
spectral line catalogue (Pickett et al., 1998) covering the submillimetre, millimetre, and microwave only has
almost 2 million entries.

Furthermore the wavenumber grid has to be set in accordance with the line widths γ, i.e. the grid spacing is
typically chosen in the order of δν ≈ γ/4. Typical line widths due to pressure broadening are in the order of
γ(p) ≈ (p/p0) 0.1cm with p0 = 1013 mb. In the atmosphere the pressure decays approximately exponentially
with altitude z, and the line width decreases accordingly until Doppler broadening (proportional to line position
and the square root of the temperature over molecular mass ratio) becomes dominant (cf. Figure 7.4). For a
spectral interval of width ∆ν = 10cm in the region of the CO2 ν2 band around 500 cm the number of spectral
grid points is in the order of 105.

A variety of approaches has been developed to speed–up the calculation and an essential difference between
different line-by-line codes is the choice of the line profile approximation, wavenumber grid, and interpolation.
Some of the algorithms are specifically designed for the individual functions to be calculated, e.g. the (Clough
and Kneizys, 1979) algorithm used in FASCODE (Clough et al., 1988): The Lorentzian (or Voigt function) is
decomposed using three or four even quartic functions, each of them is then calculated on its individual grid
(a similar technique using quadratic functions has been developed by Uchiyama, 1992). GENLN2 (Edwards,
1988) performs the line–by–line calculation in two stages, i.e., the entire spectral interval of interest is first split
in a sequence of “wide meshes”; contributions of lines with their centre in the current wide mesh interval are
computed on a fine mesh, and the contribution of other lines is computed on the wide mesh. Fomin (1995)
defines a series of grids and evaluates line wing segments of larger distance to the line centre on increasingly
coarse grids. Sparks (1997) also uses a series of grids with 2k + 1 grid points (k = 1, 2, . . . , where the coarsest
grid with 3 points spans the entire region) and uses a function decomposition similar to ours.

Figure 7.5.: Observation geometry for SCIAMACHY nadir.

The line–of–sight (LoS) in an one-dimensional spherical atmosphere is usually defined by the observer position
(altitude) and the viewing angle (zenith angle), with α = 0 for a vertical uplooking, and α = 180◦ for a vertical
donwlooking (nadir) path.

For calculation of the path geometry it is more appropriate to use radii instead of altitudes, e.g.

robs = rEarth + zobs (7.29)
rend = rEarth + zend (7.30)

for the observer point and the path end point. For all observation geometries the radius (altitude) of the LoS
tangent point to the observer is given by

rt = robs · sinα (7.31)
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7.2.3. Geometry

7.2.3.1. Uplooking

By convention, uplooking paths are characterized by zenith angles α < 90◦, see Figure 7.6. The distance of
the tangent point to the observer and to the path end point (usually at top-of-atmosphere, ToA) are given by

t = robs · cosα (7.32)

s =
√
r2
end − r2

t − t (7.33)

The angle at the path end point and the earth centred angle are

β = arcsin
rt

rend
(7.34)

ψ = arccos
rt

rend
+ α− π

2
(7.35)

Alternatively the angles can be computed according to the sine theorem

robs

sinβ
=

rend

sin(π − α)
=

s

sinψ
(7.36)

α

ψ

β

robs

rToA

rEarth

rt

s

t

Figure 7.6.: Geometry of uplooking path.

7.2.3.2. Downlooking

Downlooking paths are defined by zenith angles α > 90◦ and a tangent point altitude ht < 0, see Figure 7.7.
The length of the path is given by

s =
√
r2
obs − r2

t − t (7.37)
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with

t = robs · cos ᾱ (7.38)

and angles are given by

β = π − arcsin
rt

rend
(7.39)

ψ = arccos
rt

robs
− arccos

rt

rend
(7.40)

α

ᾱ

ψ

β

rEnd

robs

rEarth

rt

s

t

Figure 7.7.: Geometry of downlooking path.

7.2.3.3. Refraction

Because of refraction the line of sight is curved towards the Earth centre. For a atmospheric path defined by
observer position and viewing angle (w.r.t. zenith) this results in

â a lower tangent point of the path

â an increased path length

Path refraction is characterized by an refractive index η different from 1.0 (vacuum). Assuming a layered
atmosphere with constant values of pressure, temperature, densities, and hence refractive index in each layer,
the path geometry can be deduced from

â Snell’s law
ηl sinβl = ηl+1 sinαl+1 (7.41)

â Triangle geometry
rl

sinβl
=

rl+1

sinαl
(7.42)
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â The refractive index is calculated according to the recipe given for the MIPAS NRT processor (Carlotti
et al., 1998)

η(n)− 1 = 0.000272632 ∗ n/n0 with n0 = 2.54683 · 1019 molec/cm3 (7.43)

Figure 7.8.: Refraction for an uplooking path

For an uplooking path starting at an altitude h0 = r0−rEarth with zenith angle α0, the refracted path is calculated
in a step-wise fashion, cf. Figure 7.8. First the path incident angle at the top of the current layer, i.e. just below
next level is obtained from

βl = arcsin(
rl
rl+1

sinαl)

The length of the path segment between altitudes hl and hl+1 is given by

sl =
√

(rl+1 − rl sinαl) · (rl+1 + rl sinαl)− rl cosαl

Using Snell’s law (Equation 7.41) the next zenith angle is computed as

αl+1 = arcsin

(
η̄l,l+1

η̄l+1,l+2
· sinβl+1

)
where η̄ is the mean refractive index of the atmospheric layer between rl and rl+1.

For SCIAMACHY nadir observations, refraction is only taken into account for the Sun — Earth surface path
element, that can be modelled as an uplooking path for a ground based “observer” with viewing angle defined
by the solar zenith angle (SZA), see Figure 7.5. For the “downlooking” path segment (satellite — Earth surface)
with viewing angles ≤ 30◦ refraction can be neglected.
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7.2.4. Instrument - Spectral Response

The instrumental response is taken into account by convolution of the monochromatic intensity spectrum (7.1)
with a spectral response function S (a.k.a. instrumental line shape function ILS)

Î (ν) ≡ (I ⊗ S) (ν) =

∫ ∞
−∞

I (ν)× S (ν − ν′) dν′ (7.44)

(in general a further convolution will be required to account for the finite field of view, however, this is usually
negligible for nadir viewing). For SCIAMACHY NIR measurements Gaussian, hyperbolic or Voigt profiles are
commonly used,

SG(ν, γ) =
1

γ

(
ln 2

π

)1/2

· exp

[
− ln 2

(
ν

γD

)2
]

(7.45)

SH(ν, γ) =

√
2γ3/π

[ν4 + γ4]
(7.46)

SV (ν, γL, γG) = SL(ν, γL)⊗ SG(ν, γG) (7.47)

where the Voigt profile 7.19 is a convolution of the Gaussian with a Lorentzian profile

SL(ν, γ) = γ/
[
π(ν2 + γ2)

]
.

Note that all profiles defined here are normalized to unity, i.e.
∞∫
−∞
S(ν) dν = 1.

7.2.5. Input data for forward model

Modelling high resolution infra-red radiative transfer is usually done by means of line-by-line models reading
molecular spectroscopic data from databases such as Hitran (Rothman et al., 2005) or Geisa (Jacquinet-
Husson et al., 2005), see Figure 7.11. Whereas spectroscopic data of methane and carbon monoxide have
not been changed in recent versions of these databases, water spectroscopic data have been updated recently,
see Figure 7.9.
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Figure 7.9.: Water lines in SCIAMACHY channel 8 — Inter-comparison of recent Hitran 2004 and Geisa 2003
line data and corresponding cross sections. (H2O data in Hitran 2000 are approximately identical
to Geisa).
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Figure 7.10.: Temperature dependence of molecular spectroscopic lines in SCIAMACHY channel 8 (Hitran
2004 database) indicated by the length of the vertical “error” bars.
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Figure 7.11.: Molecular spectroscopic lines in SCIAMACHY channel 8 according to the Geisa database.
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Figure 7.12.: Temperature profiles (left) and volume mixing ratios (right) listed in the AFGL model atmosphere
data set.
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Figure 7.13.: Solar irradiance

7.3. Inversion

7.3.1. Non-linear least squares

The objective of SCIAMACHY near infra-red measurements in nadir viewing geometry is to retrieve information
on the vertical distribution of trace gases such as N2O, CH4 or CO, e.g. the volume mixing ratio qX(z) or number
density nX(z) = qX(z) ·nair(z) of molecule X. The standard approach to estimate the desired quantities ~x from
a measurement ~y (a vector of m components) relies on (in general non-linear) least squares fit

min
x

∥∥∥~y − ~F (~x)
∥∥∥2

. (7.48)

Here ~F denotes the forward model Rn → Rm essentially given by the radiative transfer and instrument model.
Because of the ill-posed nature of vertical sounding inverse problems, it is customary to retrieve column den-
sities

NX(z0) ≡
∫ ∞
z0

nx(z) dz , (7.49)

where z0 is the ground elevation (surface altitude).

Denoting by αm the scale factors to be estimated and by n̄m(z) the reference (e.g. climatological) densities of
molecule m, the up-welling monochromatic radiance 7.5 can be written as

I(ν) = rµ� Isun(ν) exp

− ∞∫
0

dz′

µ

∑
m

αmn̄m(z′) km(ν, z′)


exp

− ∞∫
0

dz′′

µ�

∑
m

αmn̄m(z′′) km(ν, z′′)

 (7.50)
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where for simplicity we have used the plane–parallel approximation with µ ≡ cos θ for an observer zenith angle
θ and µ� for the solar zenith angle θ�; furthermore continuum is neglected here. Introducing the total optical
depth of molecule m (for the reference profiles and the entire path),

~F (~x) ≡ Î (ν) (7.51)
= rµ� Isun(ν) e−

∑
m αmτm(ν) ⊗ S(ν, γ) + b ,

where the state vector ~x is comprised of geophysical and instrumental parameters ~α, γ, r and an optional
baseline correction b (generally a polynomial).

For the solution of the non-linear least squares problem 7.48 BIRRA uses solvers provided in the PORT Opti-
mization Library(Dennis, Jr. et al., 1981) based on a scaled trust region strategy. BIRRA provides the option
to use a non-linear least squares with simple bounds (e.g. non-negativity) to avoid non-physical results, e.g.

min
x>0

∥∥∥~y − ~F (~x)
∥∥∥2

. (7.52)

7.3.2. Separable non-linear least squares

Note that the surface reflectivity r and the baseline correction b enter the forward model ~F ≡ ̂I(ν; . . . ), 7.51,
linearly and the least squares problem 7.48 can be reduced to a separable non-linear least squares problem
(Golub and Pereyra, 2003). Splitting the vector ~x of parameters to be fitted into a vector ~α of non-linear
parameters and a vector ~β of linear parameters, i.e.

~x −→ (~α, ~β) with ~x ∈ Rn, ~α ∈ Rp, ~β ∈ Rq and n = p+ q, (7.53)

the forward model can be written as

~F (~x) −→
q∑
l=1

βl ~fl(~α) . (7.54)

where ~F ∈ Rm and ~fl ∈ Rm for l = 1, . . . , q. Combining these functions in a matrix

A(α) ≡
(
~f1(~α), ~f2(~α), . . . , ~f2(~α)

)
with A ∈ Rm×q (7.55)

7.48 is a linear least squares problem minβ

∥∥∥~y − A~β
∥∥∥2

for the vector ~β, that is (formally) solved by

~β =
(
ATA

)−1
AT~y . (7.56)

Inserting this solution in 7.54, the original least squares problem 7.48 becomes

min
α

∥∥∥∥∥~y −∑
l

((
ATA

)−1
AT~y

)
l

~fl(~α)

∥∥∥∥∥
2

. (7.57)

This is a non-linear least squares problem for ~α independent of ~β and can be solved in the usual way by means
of Gauss–Newton or Levenberg–Marquardt algorithms. Once the optimum ~α is found, the linear parameter
vector ~β is obtained from 7.56.

The main advantages of this approach are

â The non-linear least squares solver has to iterate only for a reduced fit vector ~α

â no initial guess is required for the linear parameters ~β

â The size of the Jacobian matrix is reduced
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7.4. CO Retrieval

7.4.1. Detailed Description

Carbon monoxide (CO) is an important trace gas affecting air quality and climate. It is highly variable in space
and time. About half of the CO comes from anthropogenic sources (e.g. fuel combustion), and further signifi-
cant contributions are due to biomass burning. CO is a target species of several space-borne instruments, i.e.
for AIRS, MOPITT, and TES from NASA’s EOS satellite series, and MIPAS and SCIAMACHY on ESA’s EN-
VISAT. For the retrieval of carbon monoxide the spectral interval 4282.68615 to 4302.13102 cm−1, i.e. 2.3244
µm to 2.3350 µm was used. Pressure and temperature profiles were taken from the COSPAR International
Reference Atmosphere (CIRA) providing data for each month and 34 latitudes. An US standard atmosphere
was assumed for the molecular density profiles. Surface reflectivity was modelled with a second order polyno-
mial, baseline was ignored. Correction factors for CO, CH4 and H2O are simultaneously retrieved. The product
contains the correction factors, the resulting columns from the multiplication of the correction factors with the
starting values and a "CH4 corrected" value of the total CO column. The underlying assumption for the latter
is that CH4 is homogeneously distributed compared to CO. The division of the correction factor for CO by the
correction factor for CH4 corrects approximately for remaining instrument effects, clouds in the FoV, etc:

xCO = V CDCO,ref ·
αCO
αCH4

(7.58)

Additionally the product also contains the directly retrieved CO column:

CO = V CDCO,ref · αCO (7.59)

CO is a very weak absorber. Additionally, bad pixels and a growing ice layer in channel 8 hampers the retrieval.
Thus, the most likely use case for the CO retrieved values are averages over a larger data set (e.g. monthly
means). The quality flags in the products (described in A.2.1) should be examined.

7.4.2. Retrival Settings

Level 1b-1c Settings
Calibration All calibrations except polarisation and radiometric
SMR A0 (Sun over ASM diffuser without radiometric calibration)
Main Settings
Fitting Interval 2324.4 - 2335.0 nm
Absorbers Fitted CO, CH4, H2O

Polynomial Degree Albedo 2
Slitfunction Gaussian
Proxy for xCO CH4

7.5. CH4 Retrieval

7.5.1. Detailed Description

The CH4 retrieval uses 2 spectral windows in channel 6. As a proxy correction to take into account the effect
of clouds and transmission changes CO2 is used, since its variations are small compared to methane. As for
CO two columns can be found in the product, the total column
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CH4 = V CDCH4ref · αCH4 (7.60)

and the total column corrected by the CO2 proxy

xCH4 = V CDCH4ref ·
αCH4

αCO2
(7.61)

7.5.2. Retrieval Settings

Level 1b-1c Settings
Calibration All calibrations except polarisation and radiometric
SMR A0 (Sun over ASM diffuser without radiometric calibration)
Main Settings
Fitting Interval 1557.18 - 1594.13 nm & 1628.93 - 1670.56 nm
Absorbers Fitted CO2, CH4, H2O

Polynomial Degree Albedo 2
Slitfunction Gaussian
Proxy for xCH4 CO2
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8. Limb Algorithm General Description

8.1. Summary of Retrieval Steps

Before we describe the mathematical background of the retrieval in detail we give a short description of the
processing and relate the steps to the following sections.

Input for the retrieval are fully calibrated Level 1c data ratioed with a measured spectrum at a reference height.

Geometry of the problem: Section 8.2.2. In order to calculate the radiation field for the forward model, we
first formulate the line-of-sight geometry and the coordinate system.

8.2. Forward model radiative transfer

8.2.1. General considerations

The radiative transfer equation for the diffuse radiation is:

dI
ds

(r,Ω) = −σext (r) I (r,Ω) + J (r,Ω) ,

where I (r,Ω) is the radiance at the point r in the direction characterized by the unit vector Ω, ds is the dif-
ferential path length in the direction Ω, σext is the extinction coefficient and J (r,Ω) is the source function. In
the following discussion we omit for simplicity specific reference to wavelength dependence. The direction Ω
is characterized by the zenith and azimuth angles θ and φ, respectively, and we indicate this dependency by
writing Ω = Ω (θ, φ). The source function can be decomposed into the single and multiple scattering source
terms

J (r,Ω) = Jss (r,Ω) + Jms (r,Ω) .

The single scattering source function contains the solar pseudo-source term and the thermal emission as
determined by a Planck function B (T ),

Jss (r,Ω) =
σscat (r)

4π
P (r,Ω,Ωsun)Fsune−τ

sun
ext (|r−rTOA(r)|) + σabs (r)B (T (r)) ,

while the multiple scattering source function is given by

Jms (r,Ω) =
σscat (r)

4π

∫
4π

P (r,Ω,Ω′) I (r,Ω′) dΩ′.

In the above relations, Ωsun = Ω (θsun, φsun) is the unit vector in the sun direction (or the solar direction),

τext (|r1 − r2|) =

∫
|r1−r2|

σext (r′) ds′,

is the extinction optical depth between the points r1 and r2, rTOA (r) is the point at the top of the atmosphere
corresponding to r, rTOA = r−|rTOA − r|Ωsun, Fsun is the incident solar flux, σscat is the scattering coefficient and
P (r,Ω,Ω′) is the effective scattering phase function with Ω and Ω′ being the incident and scattering directions,
respectively.
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In practical applications it is more convenient to introduce the function

S (r,Ω,Ω′) = σscat (r)P (r,Ω,Ω′)

and to express the single scattering contribution as

Jss (r,Ω) =
Fsun

4π
S (r,Ω,Ωsun) e−τ

sun
ext (|r−rTOA(r)|) + σabs (r)B (T (r))

and the multiple scattering term as

Jms (r,Ω) =
1

4π

∫
4π

S (r,Ω,Ω′) I (r,Ω′) dΩ′.

Beginning at a reference point rr and performing an integration along the path |r− rr|, the following integral
form of the radiative transfer equation can be obtained:

I (r,Ω) = I (rr,Ω) e−τ(|r−rr|)

+

∫
|r−rr|

J (r′,Ω) e−τ(|r−r′|)ds′.

At this stage of our presentation we consider a discretization of the line of sight as shown in Figure 8.1. To
compute the limb radiance at the top of the atmosphere on the near side of the tangent point we use the
integral form of the radiative transfer equation and derive a recurrence relation for the diffuse radiance at a set
of discrete points along the line of sight. With {rp}Np

p=1 being the set of intersection points of the line of sight
with a sequence of spherical surfaces of radii rp, i = 1, 2, ..., Np, we apply the integral form of the radiative
transfer equation to a layer p, with boundary points rp and rp+1, and obtain

Ip (ΩLOS) = Ip+1 (ΩLOS) e−σ̄ext,p4p

+

∫
|rp−rp+1|

J (r′,ΩLOS) e−σ̄ext,p|rp−r′|ds′. (8.1)

In the above relation Ip (ΩLOS) = I (rp,ΩLOS) is the intensity at the point Mp, 4p = |rp − rp+1| is the limb/nadir
path and σ̄ext,p is the extinction coefficient on the layer p. To transform (8.1) into a computational expres-
sion we have to describe more precisely the scattering geometry, to characterize the optical properties of the
atmosphere and to evaluate the source terms.

LOS

r p

r p1

Z sun

pA

M p
M p1

A'

sun

LOS , p

O

erp

e p

e p

Earth

TOA

sun , p

p

Figure 8.1.: Integration along the line of sight
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8.2.2. Geometry of the scattering problem

In this section we derive some geometrical parameters under the assumption that the input data are

1. the zenith angle of the line of sight θLOS,

2. the zenith angle of the sun direction θsun and

3. the relative azimuthal angle between the line of sight and the sun direction ϕ0.

A1

X

Z

A'1
T 1

LOS ,1

rTOA

Line of sight 2

LOS

O

rTOA sin LOS ,1

T 2
A'2

A2

Line of sight 1

sun ,1

esun

er ,1

er , 2

LOS

esun

LOS , 2

sun , 2

Figure 8.2.: For a sequence of limb scans characterized by different tangent levels, the solar zenith angle and
the zenith angle of the line of sight are scan dependent.

By convention, we assume that these angles are specified at the top of the atmosphere in a coordinate system
attached to the near point of the line of sights. We choose the Earth coordinate system such that the X-axis is
parallel to the line of sight ΩLOS , that is,

ΩLOS = ex.

The spherical coordinate system (er, eθ, eϕ) correspond to the near point A on the line of sight, while the
spherical coordinate system (er, eθ1, eϕ1) is obtained by a plane rotation of the coordinate system (er, eθ, eϕ)
with the angle ϕ0. Note that for a sequence of limb scans characterized by different tangent levels, the solar
zenith angle θsun, the zenith and azimuthal angles of the line of sight θLOS and ϕ0, respectively, are scan
dependent. The spherical unit vectors are given by the relations:

er = cos θLOSex + sin θLOSez,

eθ = sin θLOSex − cos θLOSez,

eϕ = ey,

and

eθ1 = cosϕ0 sin θLOSex + sinϕ0ey − cosϕ0 cos θLOSez (8.2)
eϕ1 = −sinϕ0 sin θLOSex + cosϕ0ey + sinϕ0 cos θLOSez (8.3)

SGP OL1b-2 ATBD Version 6 Page 62 of 145



Docnr.: ENV-ATB-QWG-SCIA-0085
Issue : 2B
Date : 13th May 2015

while the unit vector of the sun direction esun = −Ωsun, read as

esun = cosθsuner + sinθsuneθ1
= (sinθsuncosϕ0sinθLOS + cosθsuncosθLOS) ex + sinθsunsinϕ0ey

− (sinθsuncosϕ0cosθLOS − cosθsunsinθLOS) ez (8.4)

We define the solar coordinate system such that the Zsun-axis is parallel to the sun direction esun and the
Ysun-axis is parallel to the azimuthal unit vector eϕ1, i.e.

ez,sun = esun, ey,sun = eϕ1, ex,sun = ey,sun × ez,sun.

In view of (8.3) and (8.4) it is apparent that the Cartesian unit vectors ex,sun, ey,sun and ez,sun can be expressed
in terms of the Cartesian unit vectors ex, ey and ez. The unit vector of the line of sight ΩLOS can be computed in
the solar coordinate system as

ΩLOS = ex = nx,sunex,sun + ny,suney,sun + nz,sunez,sun (8.5)

with the coordinates being given by

nx,sun = ex · ex,sun = −sinθsuncosθLOS + cosθsunsinθLOScosϕ0

ny,sun = ex · ey,sun = sinϕ0sinθLOS
nz,sun = ex · ez,sun = sinθsunsinθLOScosϕ0 + cosθsuncosθLOS

er

LOS
esun

e
e1

e1

X

Z

Y

Z sun

Y sun

X sun

e

sun

LOS

0

sun

A

A'

T
90−LOS

Top of the atmosphere

Line of sight

Solar direction

Sun

O

Figure 8.3.: The Earth coordinate system is such that the X-axis is parallel to the line of sight ΩLOS. The solar
coordinate system is such that the Zsun-axis is parallel to the sun direction esun = −Ωsun and the
Ysun-axis is parallel to the azimuthal unit vector eϕ1. The spherical coordinate systems (er, eθ, eϕ)
and (er, eθ1, eϕ1) are rotated by ϕ0.
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Let Mp be a point on the line of sight situated at the distance sp from the near point A. The Cartesian
coordinates of the near point A in the solar coordinate system are given by

xA,sun = −r1sinθsun, yA,sun = 0, zA,sun = r1cosθsun. (8.6)

In this context we use the representation

rA = xA,sunex,sun + yA,suney,sun + zA,sunez,sun,

to express the position vector of the point Mp on the line of sight as

rMp = rA − spΩLOS. (8.7)

In view of (8.5) - (8.7) it is apparent that we can compute the Cartesian coordinates of the point Mp in the solar
coordinate system: xMp,sun, yMp,sun and zMp,sun, while a standard transformation routine enable us to calculate
the polar coordinates

(
rlev(p),Φsun,p,Ψsun,p

)
from the Cartesian coordinates

(
xMp,sun, yMp,sun, zMp,sun

)
. The

significance of rlev(p) will be clarified latter.
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Top of the atmosphere
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LOS
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Case : pp O
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2 sin 2LOS
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Figure 8.4.: Limb viewing geometry. Top: The point Mp is situated at a distance sp from the point A. The
depicted situation corresponds to the case p < p̄, where p̄ is the tangent level index. Bottom: The
points on the line of sight are 1, ..., 2p̄ − 1, the stages on the line of sight are 1, ..., 2p̄ − 2 and the
traversed limb layers are 1, ..., p̄− 1.
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In the radiative transfer calculation we are interested in the calculation of the spherical coordinates θLOS,p and
ϕLOS,p of the line of sight vector ΩLOS in the spherical coordinate system attached to the point Mp. Using the
representation (8.5), we have

ΩLOS ≡ nx,sunex,sun + ny,suney,sun + nz,sunez,sun

= mLOS,rperp +mLOS,ΦpeΦp +mLOS,ΨpeΨp ,

which gives

mLOS,rp = −sinΨsun,pnx,sun + cosΨsun,pny,sun

mLOS,Φp
= cosΦsun,pcosΨsun,pnx,sun + cosΦsun,psinΨsun,pny,sun − sinΦsun,pnz,sun

mLOS,Ψp
= sinΦsun,pcosΨsun,pnx,sun + sinΦsun,psinΨsun,pny,sun + cosΦsun,pnz,sun

Finally we pass from the Cartesian coordinates
(
mLOS,rp ,mLOS,Φp

,mLOS,Ψp

)
to the spherical coordinates (1, θLOS,p, ϕLOS,p)

by using a standard transformation routine. The cosine of the scattering angle between the line of sight and
the sun direction is given by

cos Θsun = Ωsun · eLOS = −esun · eLOS = sinΦsun,pmLOS,Φp
− cosΦsun,pmLOS,rp .

Obviously, cos Θsun should have the same values at all points on the line of sight and this property should be
used as an internal check of the code.

To define some parameters of calculation we first introduce the tangent level p̄ as that level for which it holds
that rp̄ = rtg, where rtg = rearth + htg, with htg being the tangent altitude. In this context, we define

1. number of points on the limb path, Npoint
LOS = 2p̄− 1;

2. number of stages on the limb path, Nstage
LOS = N

point
LOS − 1 = 2p̄− 2;

3. number of levels above and including the limb path Nlevel
LOS = p̄.

4. number of layers above the limb path, Nlayer
LOS = Nlevel

LOS − 1 = p̄− 1;

5. the limb paths computed in the earth coordinate system at all stages,

4p = sp − sp+1, p = 1, ..., Nstage
LOS ,

where the distances from a generic point Mp on the limb path to the near point A are computed by

s1 = 0 , s2p̄−1 = 2r1 cos θLOS,

sp = r1 cos θLOS −
√
r2
p − r2

1 sin2 θLOS, p = 2, ..., p̄− 1,

s2p̄−p = r1 cos θLOS +
√
r2
p − r2

1 sin2 θLOS, p = 2, ..., p̄− 1,

sp̄ = r1 cos θLOS;

6. the limb zenith angles of the point Mp, θLOS,p, p = 1, ..., Npoint
LOS ;

7. the limb azimuthal angles of the point Mp, ϕLOS,p, p = 1, ..., Npoint
LOS ;

8. the solar zenith angles of the point Mp, Φsun,p, p = 1, ..., N
point
LOS ;

9. the cosine of the solar scattering angle cos Θsun.

SGP OL1b-2 ATBD Version 6 Page 65 of 145



Docnr.: ENV-ATB-QWG-SCIA-0085
Issue : 2B
Date : 13th May 2015

esun

LOS

sun , p

sun , p

erp

e p

e p

sun , p

M p
A

A'

X sun

Y sun

Z sun

O
r p

erp

e p

e p

LOS
esun

M p

esun⊥

LOS⊥

sun , p

LOS , p

LOS , p

sun

sun

Figure 8.5.: Top: The spherical coordinates of the generic point Mp in the solar coordinate system(
rlev(p),Φsun,p,Ψsun,p

)
. Note that the near point A is situated in the XsunZsun-plane. Bottom:

Spherical angles θLOS,p and ϕLOS,p of ΩLOS in the spherical coordinate system attached to Mp.

Due to the peculiarities of the limb scattering geometry, two important maps can be defined:

1. the map lev (p) which map the point index p, p = 1, ..., Npoint
LOS , into the level index

lev (p) =

{
p, 1 ≤ p ≤ p̄

2p̄− p, p̄ ≤ p ≤ 2p̄− 1
;

2. the map lay (p) which map the stage index p, p = 1, ..., N
stage
LOS , into the layer index

lay (p) =

{
p, 1 ≤ p ≤ p̄− 1

2p̄− p− 1, p̄ ≤ p ≤ 2p̄− 2
.

The map lev (p) will be used when computing the solar paths 4sun,p,s and the multiple scattering term (see
below), while the map lay (p) will be used when deriving a recurrence relation for intensities and Jacobian.
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When computing the single scattering term we need to evaluate the optical depth between a point Mp and the
top of the atmosphere (along the sun direction)

τ sunext,p =

∫
|rp−rTOA|

σext (r′) ds′.

The computational relation is

τ sunext,p =

Ntrav
sun,p∑
u=1

σ̄ext,u4sun,p,u,

where Ntrav
sun,p is the effective number of solar traversed layers at the point Mp and σ̄ext,u is extinction coefficient

on the layer u. We are now concern with the calculation of the solar paths 4sun,p,u at all points Mp on the line
of sight, that is, for all u = 1, ..., Ntrav

sun,p and p = 1, ..., Npoint
LOS . Considering the point Mp in the solar coordinate

system we are faced with 2 situations which we have to consider:

1. Φsun,p < π/2. In this case no layers below Mp appears in the calculation of the optical depth and the
number of solar traversed layer is

Ntrav
sun,p = lev (p)− 1.

2. Φsun,p > π/2. In this case additional layers appear below Mp and we compute the index t as the first
index for which the inequality rlev(p)+t+1 < rlev(p) sin Φsun,p holds true. The number of of solar traversed
layer is

Ntrav
sun,p = lev (p) + t,
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Figure 8.6.: Solar traversed layers in the cases Φsun,p < π/2 (top) and Φsun,p > π/2 (bottom).
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8.2.3. Optical properties

We consider a discretization of the atmosphere inNlev levels: r1 > r2 > ... > rNlev
with the convention r1 = rTOA

and rNlev
= rs. A layer j is bounded at above by the level rj and below by the level rj+1; the number of layers

is given by Nlay = Nlev − 1.

The gas law for air molecules states that
p = nkT,

or equivalently that

p = n
R

NA
T,

with k = R/NA. The hydrostatic equilibrium law for air molecules is

dp = −gpM
RT

dr,

whence accounting of the gas law we see that

dp = −g M
NA

n (r) dr.

In terms of finite variations, the hydrostatic equilibrium law for air molecules takes the form

n (r)4r =
NA
gM
4p

and further

n (r)4r
[
molec
cm2

]
= 2.120156 · 1022 · 4p [mb]

8.2.3.1. Partial columns

The partial column of the gas g on the layer j is given by

X̄g,j =
kT0

p0

∫ rj

rj+1

ng (r) dr =
kT0

p0

∫ rj

rj+1

VMRg (r)n (r) dr =
T0

p0

∫ rj

rj+1

VMRg (r)
p (r)

T (r)
dr, (8.8)

where the gas law p = nkT and the expression relating the number density of the gas g to the air number
density n,

ng = VMRg · n,

have been employed. The computational relation then takes the form

X̄g,j

[
10−3cm

]
= 2.69578 · 107

(
VMRg[.]p [mb]

T [K]
(r)

)
j

4rj ,

with
VMRg [.] = 10−6 · VMRg [ppm] .

Another relation can be derived if we assume that the hydrostatic equilibrium law holds true. In this case we
obtain

X̄g,j =
kT0

p0

∫ rj

rj+1

VMRg (r)n (r) dr =
kT0

p0
VMRg,j

∫ rj

rj+1

n (r) dr

=
kT0

p0
VMRg,j n̄j4rj =

kT0NA
p0gM

VMRg,j4pj
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and the computational relation read as

X̄g,j

[
10−3cm

]
= 0.789087 · 106 · VMRg,j [.]4pj [mb] . (8.9)

8.2.3.2. Number density and VMR

Because the retrieved quantities are the partial columns it is important to relate the partial columns to the
number density and VMR. From the relation (cf.(8.8))

X̄g,j =
kT0

p0

∫ rj

rj+1

ng (r) dr =
kT0

p0
n̄g,j4rj ,

we get

n̄g,j

[
molec
cm3

]
= 2.6868 · 1011 X̄g,j

[
10−3cm

]
4rj [km]

.

To compute the VMR we use again (8.8) which yields

X̄g,j =
T0

p0

∫ rj

rj+1

VMRg (r)
p (r)

T (r)
dr =

T0

p0
VMRg,j

( p
T

(r)
)
j
4rj

and further

VMRg,j [.] =
X̄g,j

[
10−3cm

]
2.69578 · 107 ·

(
p[mb]
T [K] (r)

)
j
4rj [km]

.

When the hydrostatic equilibrium law is assumed to holds true, the computational relation is (8.9) and the result
is,

VMRg,j [.] =
X̄g,j

[
10−3cm

]
0.789087 · 106 · 4pj [mb]

.

8.2.3.3. Scattering optical depth of air molecules

The scattering optical depth of air molecules on the layer j is defined by

τ̄ molscat,j (λ) = Cscat (λ)

∫ rj

rj+1

n (r) dr = Cscat (λ)

∫ 4rj
0

p (r)

kT (r)
dr

and the computational expression is

τ̄ molscat,j (λ) = 0.724311 · 1024 · Cscat (λ)
[
cm2

](p [mb]

T [K]
(r)

)
j

4rj [km]

Assuming that the the hydrostatic equilibrium law holds true, we obtain

τ̄ molscat,j (λ) = Cscat (λ)

∫ rj

rj+1

n (r) dr = Cscat (λ) n̄j4rj = Cscat (λ)
NA
gM
4pj

and further
τ̄ molscat,j (λ) = 2.120156 · 1022 · Cscat (λ)

[
cm2

]
4pj [mb]

For the scattering coefficient we get

σ̄molscat,j (λ) =
τ̄ molscat,j (λ)

4rj
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The Rayleigh scattering coefficient Cscat (λ) is computed by using the relation

Cscat (λ)
[
cm2

]
=

3.99 · 10−4 (1/λ)
4

1− 1.06 · 10−2 (1/λ)
2 − 6.68 · 10−5 (1/λ)

4 · 10−24

with λ [µm].

8.2.3.4. Absorption optical depth of gas molecules

The absorption optical depth of gas molecules on the layer j is a sum over all constituents

τ̄ molabs,j (λ) =
∑
g

τ̄ molabs,g,j (λ) ,

where the optical depth of the gas component g is given by

τ̄ molabs,g,j (λ) = C̄abs,g,j (λ)

∫ rj

rj+1

ng (r) dr = C̄abs,g,j (λ)
p0

kT0
X̄g,j

or equivalently, by
τ̄ molabs,g,j (λ) = 2.6868 · 1016 · C̄abs,g,j (λ)

[
cm2

]
X̄g,j

[
10−3cm

]
.

The absorption coefficient is then computed accordingly to the relation

σ̄molabs,j (λ) =
τ̄ molabs,j (λ)

4rj
.

8.2.3.5. Scattering optical depth of aerosols

The scattering optical depth of aerosols on the layer j depends on the aerosol optical thickness taer,j and the
wavelength λ,

τ̄ aerscat,j (λ) = taer,j
[
āaer3,j + (λ− λref) āaer4,j

]
,

For the extinction optical depth we have a similar relation

τ̄ aerext,j (λ) = taer,j
[
āaer1,j + (λ− λref) āaer2,j

]
.

The scattering and extinction coefficients are then given by

σ̄aerscat,j (λ) =
τ̄ aerscat,j (λ)

4rj

and

σ̄aerext,j (λ) =
τ̄ aerext,j (λ)

4rj
,

respectively.

8.2.3.6. Total extinction optical depth

Since

extinction = scattering by air molecules + absorption by gas molecules
+ extinction by aerosols
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the total extinction optical depth on the layer j is computed as

τ̄ext,j (λ) =
[
τ̄ molscat,j (λ) + τ̄ molabs,j (λ)

]
+ τ̄ aerext,j (λ) ,

while the extinction coefficient is given by

σ̄ext,j (λ) =
τ̄ext,j (λ)

4rj
.

Because only the absorption of gas molecules depends on partial columns, the partial derivative of the extinc-
tion and absorption coefficients with respect to the partial columns of the gas g are given by

∂σ̄ext,j
∂X̄g,j

(λ) =
∂σ̄abs,j
∂X̄g,j

(λ) =
∂σ̄molabs,j

∂X̄g,j
(λ) = 2.6868 · 1016 · 1

4rj
C̄abs,g,j (λ)

while the partial derivative of the extinction and scattering coefficients with respect to the aerosol optical thick-
ness read as

∂σ̄ext,j
∂taer,j

(λ) =
1

4rj
[
āaer1,j + (λ− λref) āaer2,j

]
and

∂σ̄scat,j
∂taer,j

(λ) =
1

4rj
[
āaer3,j + (λ− λref) āaer4,j

]

8.2.3.7. Phase functions

For a scattering atmosphere, the effective scattering phase function accounts of Rayleigh scattering by air
molecules (molecular scattering) P and Mie scattering by aerosols (particle scattering),

S (r,Ω,Ω′, λ) = σscat (r, λ)P (r,Ω,Ω′, λ)

= σmolscat (r, λ)PRay (Ω,Ω′, λ) + σaerscat (r, λ)PMie (r,Ω,Ω′, λ) .

If cos Θ = Ω · Ω′ is the cosine of the angle Θ between the incident and scattering directions, we have the
simplified representation

S (r, cos Θ, λ) = σscat (r, λ)P (r, cos Θ, λ)

= σmolscat (r, λ)PRay (cos Θ, λ) + σaerscat (r, λ)PMie (r, cos Θ, λ) .

In practical applications it is important to compute

PRay (cos Θsun, λ)

and
P̄Mie,p (cos Θsun, λ)

for all stages p = 1, ..., Nstage
LOS . The Rayleigh phase function possesses the representation

PRay (cos Θ, λ) = A (λ) +B (λ) cos2 Θ

with
A (λ) =

3 + 3ρ (λ)

4 + 2ρ (λ)
, B (λ) =

3− 3ρ (λ)

4 + 2ρ (λ)
.

The depolarization ratio is computed as

ρ (λ) =
6FK (λ)− 6

7FK (λ) + 3
,
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while the King factor is given by

FK (λ) = 1.04695 + 3.25031 · 10−4

(
1

λ

)2

+ 3.86228 · 10−5

(
1

λ

)4

with λ expressed in µm. The Mie scattering phase function takes the form

P̄Mie,lay(p) (cos Θ, λ) =
1− ḡ2

lay(p) (λ)(
1 + ḡ2

lay(p) (λ)− 2ḡlay(p) (λ) cos Θ
)3/2

,

where the asymmetry factor ḡlay(p) on the layer lay (p) is computed as

ḡlay(p) (λ) = āaer4,lay(p) + (λ− λref) āaer5,lay(p).

8.2.4. Recurrence relation for limb radiance and Jacobian

We are now well prepared to transform equation (8.1) into a computational expression. For two points on the
line of sight Mp and Mp+1 characterized by the position vectors rp and rp+1 and being the boundaries of the
layer lay (p), the integral form of the radiative transfer equation takes the form

Ip (ΩLOS) = Ip+1 (ΩLOS) e−σ̄ext,lay(p)4p

+

∫
|rp−rp+1|

J (r′,ΩLOS) e−σ̄ext,lay(p)|rp−r′|ds′,

with Ip (ΩLOS) = I (rp,ΩLOS) and 4p = |rp − rp+1|. Note that the position vector of the point Mp is rp,
while the radial distance is r (Mp), that is, in the solar coordinate system we have the representation rp =

(r (Mp) ,Φsun,p,Ψsun,p). The downward recurrence relation starts at the point index N
point
LOS , where for limb

viewing geometries,
INpoint

LOS
(ΩLOS) = 0.

p1 p

O

r p1 r p ,

point index :

stage index :

layer index :

p

lay  p

p

M p
M p1

r p=r lev p ,sun p ,sun p

level index : lev  plev  p1

p=1,. .. ,2 p−2

r '

s'

Figure 8.7.: Stage index p, point indices p and p + 1, layer index lay (p) and the level indices lev (p) and
lev (p+ 1).
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8.2.4.1. Recurrence relation for limb radiance

In this Section we are concerned with the single and multiple scattering term integrations.

Single scattering term integration

On the layer lay (p), where p is the stage index ranging downward from Nstage
LOS to 1, the single scattering term

can be approximated by

Jss (r′,ΩLOS) =
1

4π
S (r,ΩLOS,Ωsun)pFsune−τ

sun
ext (|r′−rTOA(r′)|) + σ̄abs,lay(p)B̄lay(p),

where
B̄lay(p) =

1

2
[B (Tp) +B (Tp+1)] ,

with Tp and Tp+1 being the intensities at the points Mp and Mp+1, respectively. We define the solar optical
depths at the boundary points Mp and Mp+1 by

τ sunext,p =

∫
|rp−rTOA,p|

σext (r′) ds′ =

Ntrav
sun,p∑
q=1

σ̄ext,q4sun,p,q,

τ sunext,p+1 =

∫
|rp+1−rTOA,p+1|

σext (r′) ds′ =

Ntrav
sun,p+1∑
q=1

σ̄ext,q4sun,p+1,q,

where the 4sun,p,q are the solar optical depths at the point Mp for all q = 1, ..., Ntrav
sun,p and the 4sun,p+1,q are the

solar optical depths at the point Mp+1 for all q = 1, ..., Ntrav
sun,p+1. We then use the linear approximations

τ sunext (|r′ − rTOA (r′)|) =
s

4p
τ sunext,p +

(
1− s

4p

)
τ sunext,p+1

to obtain ∫
|rp−rp+1|

Jss (r′,ΩLOS) e−σ̄ext,lay(p)|rp−r′|ds′

=
Fsun

4π
S (r,ΩLOS,Ωsun)p

∫ 4p

0

e−
[

s
4p

τ sunext,p+
(

1− s
4p

)
τ sunext,p+1

]
e−σ̄ext,lay(p)(4p−s) ds

+σ̄abs,lay(p)B̄lay(p)

∫ 4p

0

e−σ̄ext,lay(p)(4p−s) ds.

The result of integration is

Iss (rp, rp+1,ΩLOS) =

∫
|rp−rp+1|

Jss (r′,ΩLOS) e−σ̄ext,lay(p)|rp−r′|ds′

=
Fsun

4π
S (r,ΩLOS,Ωsun)p4pb (τp) + a0 (τp)4pσ̄abs,lay(p)B̄lay(p)

where

a0 (x) =

∫ 1

0

e−x(1−ξ)dξ =
1− e−x

x

b (x) =

∫ 1

0

e−[ξτ sunext,p+(1−ξ)τ sunext,p+1]e−x(1−ξ) dξ =
e−(τ sunext,p+1+x) − e−τ

sun
ext,p

τ sunext,p − τ sunext,p+1 − x

and
τp = σ̄ext,lay(p)4p.
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The term S (r,ΩLOS,Ωsun)p is computed by using the relation

S (r,Ω,Ωsun)p = σ̄molscat,lay(p)PRay

(
cos Θsun,p

)
+ σaerscat,lay(p)P̄Mie,lay(p)

(
cos Θsun,p

)
where the stage values PRay

(
cos Θsun,p

)
and P̄Mie,lay(p)

(
cos Θsun,p

)
are calculated by the optical module for all

p = 1, ..., Nstage
LOS .

Multiple scattering term integration

On the layer lay (p), where p is the stage index ranging downward from Nstage
LOS to 1, the multiple scattering term

read as

Jms (r′,ΩLOS) =
1

4π

∫
4π

S̄p (ΩLOS,Ω
′) I (r′,Ω′) dΩ′

and note that the calculation of S (r,ΩLOS,Ωsun)p and S̄p (ΩLOS,Ω
′) is different. Using the linear approximation

I (r′,Ω′) =
s

4p
Ip (Ω′) +

(
1− s

4p

)
Ip+1 (Ω′) ,

where Ip and Ip+1 are the intensities at the points Mp and Mp+1, respectively, we obtain∫
|rp−rp+1|

Jms (r′,ΩLOS) e−σ̄ext,lay(p)|rp−r′|ds′

=

[∫ 4p

0

s

4p
e−σ̄ext,lay(p)(4p−s) ds

]
J̄1
ms,p

+

[∫ 4p

0

(
1− s

4p

)
e−σ̄ext,lay(p)(4p−s) ds

]
J̄2
ms,p

with

J̄ms,p =
1

4π

∫
4π

S̄p (ΩLOS,Ω
′) Ip (Ω′) dΩ′

J̄ms,p+1 =
1

4π

∫
4π

S̄p (ΩLOS,Ω
′) Ip+1 (Ω′) dΩ′

To compute J̄ms,p we use the relation

J̄ms,p =
1

4π

∫
4π

S̄p (ΩLOS,Ω
′) Ip (Ω′) dΩ′

=
1

2

2M−1∑
m=0

[∫ 1

−1

sm
(
σ̄scat,lay(p), µLOS,p, µ

′) Im (r (Mp) , µ
′) dµ′

]
cosmϕLOS,p

=
1

2

2M−1∑
m=0

[
M∑
k=1

w+
k sm

(
σ̄scat,lay(p), µLOS,p, µ

+
k

)
Im
(
r (Mp) , µ

+
k

)
+

M∑
k=1

w−k sm
(
σ̄scat,lay(p), µLOS,p, µ

−
k

)
Im
(
r (Mp) , µ

−
k

)]
cosmϕLOS,p,

where θLOS,p and ϕLOS,p are the zenith and azimuthal angles of the point Mp, µLOS,p = cos θLOS,p and

sm
(
σ̄scat,lay(p), µLOS,p, µ

′) =

2M−1∑
n=m

ξn
(
σ̄scat,lay(p)

)
Pmn (µLOS,p)P

m
n (µ′) ,

ξn
(
σ̄scat,lay(p)

)
= σ̄molscat,lay(p)χ

mol
n + σ̄aerscat,lay(p)χ̄

aer
n,lay(p).
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The Im (r (Mp) , θ) are the azimuthal components of the intensity at the the point Mp

Ip (Ω) = I (r (Mp) , θ, ϕ) =

2M−1∑
m=0

Im (r (Mp) , θ) cosmϕ

and are computed at a set of discrete angles θ±k , k = 1, ...,M by the multiple scattering module. For J̄ms,p+1 we
have a similar relation

J̄ms,p+1 =
1

4π

∫
4π

S̄p (ΩLOS,Ω
′) Ip+1 (Ω′) dΩ′

1

2

2M−1∑
m=0

[
M∑
k=1

w+
k sm

(
σ̄scat,lay(p), µLOS,p+1, µ

+
k

)
Im
(
r (Mp+1)µ+

k

)
+

M∑
k=1

w−k sm
(
σ̄scat,lay(p), µLOS,p+1, µ

−
k

)
Im
(
r (Mp+1) , µ−k

)]
cosmϕLOS,p+1,

where Im (r (Mp+1) , θ) are the azimuthal components of the intensity at the the point Mp+1 and

sm
(
σ̄scat,lay(p), µLOS,p+1, µ

′) =

2M−1∑
n=m

ξn
(
σ̄scat,lay(p)

)
Pmn (µLOS,p+1)Pmn (µ′) .

Performing the integrals we arrive at

Ims (rp, rp+1,ΩLOS) =

∫
|rp−rp+1|

Jms (r′,ΩLOS) e−σ̄ext,lay(p)|rp−r′|ds′

= a2 (τp)4pJ̄ms,p + a1 (τp)4pJ̄ms,p+1

with

a1(x) =

∫ 1

0

(1− ξ)e−x(1−ξ)dξ =
1

x2

[
1− (1 + x) e−x

]
a2(x) =

∫ 1

0

ξe−x(1−ξ)dξ =
1

x2

(
x− 1 + e−x

)
.

Collecting all results we are led to the recurrence relation

Ip (ΩLOS) = Ip+1 (ΩLOS) e−τp +
Fsun

4π
S (r,ΩLOS,Ωsun)p4pb (τp)

+a0 (τp)4pσ̄abs,lay(p)B̄lay(p) + a2 (τp)4pJ̄ms,p + a1 (τp)4pJ̄ms,p+1

8.2.4.2. Recurrence relation for the Jacobian matrix

The derivative of the radiance at the top of the atmosphere Ip (ΩLOS) with respect to the partial columns X̄g,i,
with i = 1, ..., Nd and g = 1, ..., Ngas

∂Ip
∂X̄g,i

(ΩLOS) ,

can be computed in terms of the derivatives with respect to the extinction coefficient

∂Ip
∂σ̄ext,i

(ΩLOS)

by using the relation
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∂Im
∂X̄g,i

(ΩLOS) =
∂Im
∂σ̄ext,i

(ΩLOS)
∂σ̄ext,i
∂X̄g,i

with
∂σ̄ext,i
∂X̄g,i

=
∂σ̄molabs,i

∂X̄g,j
· 2.6868 · 1016 · 1

4ri
C̄abs,g,i.

For the partial derivatives with respect to the extinction coefficient we have the recurrence relation

∂Ip
∂σ̄ext,i

(ΩLOS)

= Ip+1 (ΩLOS)
∂

∂σ̄ext,i

{
e−τp

}
+ e−τp

∂Ip+1

∂σ̄ext,i
(ΩLOS)

+
Fsun

4π
4pb (τp)

∂

∂σ̄ext,i

{
S (r,ΩLOS,Ωsun)p

}
+
Fsun

4π
S (r,ΩLOS,Ωsun)p4p

∂b (τp)

∂σ̄ext,i

+4pσ̄abs,lay(p)B̄lay(p)
∂

∂σ̄ext,i
{a0 (τp)}+ a0 (τp)4pB̄lay(p)

∂σ̄abs,lay(p)

∂σ̄ext,i

+a2 (τp)4p
∂J̄ms,p
∂σ̄ext,i

+4pJ̄ms,p
∂

∂σ̄ext,i
{a2 (τp)}

+a1 (τp)4p
∂J̄ms,p+1

∂σ̄ext,i
+4pJ̄ms,p+1

∂

∂σ̄ext,i
{a1 (τp)}

For our calculation it is important to observe that the extinction coefficient σ̄ext,i which is computed as

σ̄ext,i =
(
σ̄molscat,i + σ̄molabs,i

)
+ σ̄aerext,i

(note that σ̄aerscat,i does not appear explicitly) enters:

1. explicitly,

2. in the expression of τsun and

3. in the expression of σ̄abs,lay(p) multiplying the Planck function B,

σ̄abs,lay(p) = σ̄ext,lay(p) − σ̄scat,lay(p),

but does not enter in the expression of S (or sm). The partial derivative terms are computed as follows:

1. The partial derivative of e−τp is given by

∂

∂σ̄ext,i

{
e−τp

}
= −4pe−τp

∂σ̄ext,lay(p)

∂σ̄ext,i
= −4pe−τpδlay(p),i

2. Since S does not depend on σ̄ext,i , it is apparent that

∂

∂σ̄ext,i

{
S (r,ΩLOS,Ωsun)p

}
= 0.

3. To compute the term
∂b (τp)

∂σ̄ext,i
,
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we first compute

∂τ sunext,p

∂σ̄ext,i
=

∂

∂σ̄ext,i


Ntrav

sun,p∑
q=1

σ̄ext,q4sun,p,q


=


4sun,p,i, i ≤ Ntrav

sun,p

0, i > Ntrav
sun,p

and

∂τ sunext,p+1

∂σ̄ext,i
=

∂

∂σ̄ext,i


Ntrav

sun,p+1∑
q=1

σ̄ext,q4sun,p+1,q


=


4sun,p+1,i, i ≤ Ntrav

sun,p+1

0, i > Ntrav
sun,p+1

.

Then we have

∂b (τp)

∂σ̄ext,i
= −b (τp)

{
∂τ sunext,p+1

∂σ̄ext,i

+
1

τ sunext,p − τ sunext,p+1 − τp

[(
∂τ sunext,p

∂σ̄ext,i
−
∂τ sunext,p+1

∂σ̄ext,i

)
−4pδlay(p),i

]}
+

1

τ sunext,p − τ sunext,p+1 − τp

[
e−τ

sun
ext,p+1

∂

∂σ̄ext,i

{
e−τp

}
+e−τ

sun
ext,p

(
∂τ sunext,p

∂σ̄ext,i
−
∂τ sunext,p+1

∂σ̄ext,i

)]

4. The partial derivative of a0 (τp) takes the form

∂

∂σ̄ext,i
{a0 (τp)} = a′0 (τp)4pδlay(p),i,

where

a′0 (x) =
e−xx− (1− e−x)

x2
=
xe−x + e−x − 1

x2
.

Similarly, the partial derivatives of a2 (τp) and a1 (τp) are given by

∂

∂σ̄ext,i
{a2 (τp)} = a′2 (τp)4pδlay(p),i

with

a′2 (x) =
(1− e−x)x2 − 2x (x− 1 + e−x)

x4

=
x2 − x2e−x − 2x2 + 2x− 2xe−x

x4

=
−x2e−x − x2 + 2x− 2xe−x

x4

= − (x− 2) + e−x (x+ 2)

x3
,
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and
∂

∂σ̄ext,i
{a1 (τp)} = a′1 (τp)4pδlay(p),i

with
a′1(x) = a′0 (x)− a′2(x).

5. The partial derivative of the absorption coefficient is identical to the partial derivative of the extinction
coefficient

∂σ̄abs,lay(p)

∂σ̄ext,i
=
∂σ̄ext,lay(p)

∂σ̄ext,i
= δlay(p),i.

6. To compute the partial derivatives of the multiple scattering terms J̄ms,p and J̄ms,p+1 we take into account
that the sm does not depend on σ̄ext,i and derive

∂J̄ms,p
∂σ̄ext,i

=
1

2

2M−1∑
m=0

[
M∑
k=1

w+
k sm

(
σ̄scat,lay(p), µLOS,p, µ

+
k

) ∂Im
∂σ̄ext,i

(
r (Mp) , µ

+
k

)
+

M∑
k=1

w−k sm
(
σ̄scat,lay(p), µLOS,p, µ

−
k

) ∂Im
∂σ̄ext,i

(
r (Mp) , µ

−
k

)]
cosmϕLOS,p

and

∂J̄ms,p+1

∂σ̄ext,i

=
1

2

2M−1∑
m=0

[
M∑
k=1

w+
k sm

(
σ̄scat,lay(p), µLOS,p+1, µ

+
k

) ∂Im
∂σ̄ext,i

(
r (Mp+1) , µ+

k

)
+

M∑
k=1

w−k sm
(
σ̄scat,lay(p), µLOS,p+1, µ

−
k

) ∂Im
∂σ̄ext,i

(
r (Mp+1) , µ−k

)]
cosmϕLOS,p+1

8.2.4.3. Input parameters for limb radiance and Jacobian calculation

The input parameters for radiance and Jacobian calculation are listed below:

1. the extinction coefficient σ̄ext,j (λ), the molecular and aerosol scattering coefficients σ̄molscat,j (λ) and σ̄aerscat,j (λ),
and the molecular absorption coefficient σ̄molabs,j (λ) on all layers, that is, for all j = 1, ..., Nlay;

2. the partial derivative of the extinction coefficient

∂σ̄ext,j
∂X̄g,j

,

for all gases and all on all layers, that is, for all g = 1, ..., Ngas and j = 1, ..., Nlay;

3. the Rayleigh and Mie phase functions PRay

(
cos Θsun,p

)
and P̄Mie,p

(
cos Θsun,p

)
on all stages on the line of

sight, that is, for all p = 1, ..., Nstage
LOS ;

4. the limb paths 4p of all stages on the line of sight, that is, for all p = 1, ..., Nstage
LOS ;

5. the number of solar traversed layers Ntrav
sun,p at all points Mp on the line of sight, that is, for all p =

1, ..., Npoint
LOS ;

6. the solar optical depths 4sun,p,q at all points Mp on the line of sight, that is, for all q = 1, ..., Ntrav
sun,p and

p = 1, ..., Npoint
LOS ;
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7. the multiple scattering terms J̄ms,p and J̄ms,p+1 on all stages on the line of sight, that is for all p =
1, ..., N

stage
LOS ;

8. the partial derivatives of the multiple scattering terms

∂J̄ms,p
∂σ̄ext,i

and
∂J̄ms,p+1

∂σ̄ext,i
,

for all stages on the line of sight and all layers, that is, for all p = 1, ..., N
stage
LOS and i = 1, ..., Nlay.

8.2.5. Pseudo-spherical discrete ordinate radiative transfer equation

The discrete ordinate method converts the radiative transfer equation into a linear system of differential equa-
tions by discretizing the angular variation of the phase function and radiance. In the conventional eigenvalue
approach, the general solution of the linear system of differential equations consists of a linear combination
of all the homogeneous solutions plus the particular solutions for the assumed sources. For a multi-layered
medium, the expansion coefficients of the homogeneous solutions are the unknowns of the discretized ra-
diative transfer problem and are computed by imposing the continuity condition for the radiances across the
layer interfaces. In the matrix-exponential formalism, the linear system of differential equations is treated as a
boundary value problem. For each layer this classical mathematical procedure yields a so called layer equa-
tion which relates the level values of the radiance. The discretized radiative transfer problem then reduces to a
system of linear algebraic equations for the unknown level values of the radiance.

The purpose of this Section is to present a stable discrete ordinate algorithm for vertically inhomogeneous
layered media using the matrix-exponential solution. Conceptually, the algorithm is similar to a finite-element
algorithm and involves the following steps:

â discretization of the atmosphere into a number of distinct but vertically uniform layers,

â derivation of the layer equation using the matrix-exponential solution,

â assemblage of the layer equation into the system matrix of the entire atmosphere,

â solution of the assembled system of equations.

8.2.5.1. Requirement for a pseudo-spherical model

The calculation of the multiple scattering terms J̄ms,p and J̄ms,p+1 and of their partial derivatives ∂J̄ms,p
∂σ̄ext,i

and
∂J̄ms,p+1

∂σ̄ext,i
on the stage index p, with p = 1, ..., N

stage
LOS require the knowledge of the azimuthal components of the

intensities and their derivatives at the boundary points Mp and Mp+1, that is,

Im
(
r (Mp) , θ

±
k

)
and

∂Im
∂σ̄ext,i

(
r (Mp) , µ

±
k

)
and

Im
(
r (Mp+1) , θ±k

)
and

∂Im
∂σ̄ext,i

(
r (Mp+1) , µ±k

)
for all k = 1, ...,M , m = 0, ..., 2M − 1 and i = 1, ..., Nd. The above requirements are equivalent with the
knowledge of

Im
(
r (Mp) , θ

±
k

)
and

∂Im
∂σ̄ext,i

(
r (Mp) , µ

±
k

)
at all points Mp on the line of sight, that is for all k = 1, ...,M , m = 0, ..., 2M − 1, i = 1, ..., Nd and p =

1, ..., Npoint
LOS . Because the point Mp is situated on a radial direction which encloses the angle Φsun,p with the

Zsun-axis and assuming that for a solar zenith angle

θsun = π − Φsun,p,
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we are able to compute the intensities

Im
(
rj , θ

±
k

)
and

∂Im
∂σ̄ext,i

(
rj , µ

±
k

)
for all k = 1, ...,M , m = 0, ..., 2M − 1, i = 1, ..., Nd and j = 1, ..., N by a pseudo-spherical model. To achieve
that we may use a simple interpolation procedure and derive

Im
(
r (Mp) , θ

±
k

)
=

s

4rj
Im
(
rj̄ , θ

±
k

)
+

(
1− s

4rj

)
Im
(
rj̄+1, θ

±
k

)
,

∂Im
∂σ̄ext,i

(
r (Mp) , µ

±
k

)
=

s

4rj
∂Im
∂σ̄ext,i

(
rj̄ , θ

±
k

)
+

(
1− s

4rj

)
∂Im
∂σ̄ext,i

(
rj̄+1, θ

±
k

)
where the index j̄ is such that rj̄+1 ≤ rlev(p) ≤ rj̄ , s = rlev(p)− rj̄+1 and4rj = rj̄ − rj̄+1. It is important to note
that Im

(
rj , θ

±
k

)
is a 3-dimensional array, while ∂Im

∂σ̄ext,i

(
rj , µ

±
k

)
is a 4-dimensional array.

8.2.5.2. General considerations

In a pseudo-spherical atmosphere the boundary-value problem for the diffuse radiance consists of the inho-
mogeneous differential equation

µ
dI
dr

(r,Ω) = −σext (r) I (r,Ω) + Jss (r,Ω) + Jms (r,Ω) , (8.10)

the top-of-atmosphere boundary condition (r = rTOA)

I
(
rTOA,Ω

−) = 0 (8.11)

and the surface boundary condition (r = rs)

I
(
rs,Ω

+
)

= ε
(
Ω+
)
B (rs) + Fsun

A

π
|µsun| ρnorm

(
Ω+,Ωsun

)
e−τ

sun
ext (|rs−rTOA|) (8.12)

+
A

π

∫
2π

I
(
rs,Ω

−) ∣∣µ−∣∣ ρnorm (Ω+,Ω−
)

dΩ−

Assuming the azimuthal expansion of the diffuse radiance Im (ϕsun = 0)

I (r,Ω) = I (r, µ, ϕ) =

2M−1∑
m=0

Im (r, µ) cosmϕ,

the radiative transfer equation can be expressed in the discrete ordinate space as:

µ±k
dIm
dr

(
r, µ±k

)
= −σext(r)Im

(
r, µ±k

)
+ δm0σabs(r)B (r)

+ (2− δm0)
Fsun

4π
σscat (r) pm

(
r, µ±k , µsun

)
e−τ

sun
ext (|r−rTOA|) (8.13)

+
1

2

M∑
l=1

wlσscat (r)
[
pm
(
r, µ±k , µ

+
l

)
Im
(
r, µ+

l

)
+ pm

(
r, µ±k , µ

−
l

)
Im
(
r, µ−l

)]
,

where pm are the azimuthal expansion coefficients of the scattering phase function

P (r,Ω,Ω′) =

2M−1∑
m=0

(2− δm0) pm (r, µ, µ′) cos [m (ϕ− ϕ′)] .
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In equation (8.13) µ is the cosine of the zenith angle; our convention is that µ = 1 for upward radiation and
µ = −1 for downward radiation. The set

{
µ+
k , wk

}
k=1,M

is the set of Gauss-Legendre quadrature points and
weights in the interval (0, 1), while

{
µ−k , wk

}
k=1,M

with µ−k = −µ+
k is the set of quadrature points and weights

in the interval (−1, 0). Defining the radiance vector function in the discrete ordinate space by

im (r) =

[
i+m (r)

i−m (r)

]

with [i±m (r)]k = Im
(
r, µ±k

)
, k = 1, ...,M we are led to the linear system of differential equations

dim
dr

(r) = Am (r) im (r) + bm (r) . (8.14)

The entries of the layer matrix

Am (r) =

[
A11
m (r) A12

m (r)

A21
m (r) A22

m (r)

]
are given by [

A11
m (r)

]
kl

=
1

2µ+
k

[
wlσscat (r) pm

(
r, µ+

k , µ
+
l

)
− 2σext(r)δkl

]
,

[
A12
m (r)

]
kl

=
1

2µ+
k

wlσscat (r) pm
(
r, µ+

k , µ
−
l

)
,

[
A21
m (r)

]
kl

=
1

2µ−k
wlσscat (r) pm

(
r, µ−k , µ

+
l

)
,

[
A22
m (r)

]
kl

=
1

2µ−k

[
wlσscat (r) pm

(
r, µ−k , µ

−
l

)
− 2σext(r)δkl

]
for all k, l = 1, ...,M . The source vector is decomposed into a solar and a thermal contribution

bm (r) = bsun,m (r) e−τ
sun
ext (|r−rTOA|) + bth,m (r) ,

where [
b±sun,m (r)

]
k

=
1

µ±k
(2− δm0)

Fsun

4π
σscat (r) pm

(
r, µ±k , µsun

)
and [

b±th,m (r)
]
k

=
1

µ±k
δm0σabs(r)B (r)

for all k = 1, ...,M .

8.2.5.3. Integral form of the layer equation

Let us consider a discretization of the atmosphere in N levels: r1 > r2 > ... > rN with the convention r1 = rTOA
and rN = rs, where rs is the lowest (surface) point of the atmosphere. A layer j is bounded above by the level
rj and below by the level rj+1; the number of layers is N − 1. The optical coefficients and the phase function
are assumed to be constant within each layer and for the layer j with geometrical thickness 4rj = rj − rj+1

we denote by Ām,j the average value of Am (r). In this regard equation (8.14) reduces to a linear system of
differential equations with constant coefficients

dim
dr

(ρ) = Ām,jim (ρ) + bm (ρ) , (8.15)
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where the layer coordinate ρ is defined by ρ = r − rj+1 and 0 ≤ ρ ≤ 4rj . Solving equation (8.15) with the
boundary condition

im (0) = im,j+1

yields

im,j = eĀm,j4rj im,j+1 +

∫ 4rj
0

eĀm,j(4rj−ρ)bm (ρ) dρ (8.16)

with im,j and im,j+1 being the radiances at the boundary levels j and j + 1, respectively. Using the property
of the matrix exponential: eaAebA = e(a+b)A, which holds true for two arbitrary scalars a and b, we left multiply
the above equation by the matrix e−Ām,j4rj and obtain the integral form of the layer equation

im,j+1 = e−Ām,j4rj im,j −
∫ 4rj

0

e−Ām,jρbm (ρ) dρ. (8.17)

8.2.5.4. Layer equation

In principle, the exponential of a matrix can be computed by methods involving the matrix eigenvalues, ap-
proximation theory, differential equations and the matrix characteristic polynomial. In the present analysis we
concentrate on the matrix eigenvalue method and the Padé approximation. Furthermore, the computation of
the integral of the matrix exponential in equation (8.17) requires a parametrization of the source term within
each layer. In this regard, the thermal layer vector bth,m (ρ) is linearly interpolated between the level values
b̄th,m,j and b̄th,m,j+1,

bth,m (ρ) =
ρ

4rj
b̄th,m,j +

(
1− ρ

4rj

)
b̄th,m,j+1,

although a higher-order polynomial approximation can also be considered. The solar layer vector is computed
accordingly to the average secant approximation, that is,

bsun,m (ρ) e−τ
sun
ext (|r−rTOA|) = b̄sun,m,je−τ

sun
ext (ρ)

and

τ sunext (ρ) =
ρ

4rj
τ sunext,j +

(
1− ρ

4rj

)
τ sunext,j+1,

where b̄sun,m,j is a layer quantity, τ sunext,j and τ sunext,j+1 are the solar optical depths at the boundary levels j and
j+ 1. For most practical applications encountered in atmospheric remote sensing, the accuracy of the average
secant approximation is reasonable; for extreme situations involving optically thick layers and high solar zenith
angles, improved exponential-polynomial parametrization can also be employed.

8.2.5.5. Matrix eigenvalue method

In the eigenvalue solution method the matrix exponential and the integral terms involving matrix exponentials
are computed by using the spectral decomposition of the matrix Ām,j . This method is especially efficient due
to the special structure of the matrix Ām,j , written for convenience as

A =

[
A11 A12

−A12 −A11

]
.

The eigenvalues of A are real and occur in pairs, in which case the order of the algebraic eigenvalue problem
can be reduced by a factor of 2. The steps of computing the eigenstate of the matrix A can be summarized as
follows:

1. Compute A+ = A−A+, where A+ = A11 + A12 and A− = A11 −A12 , and determine the eigenstate{
µk,w

+
k

}
k=1,M

of the matrix A+.

2. Normalize the vectors w+
k for k = 1, ...,M .
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3. Compute the eigenvectors of the matrix A− = A+A−

w−k =
1
√
µk

A+w+
k , k = 1, ...,M. (8.18)

4. Set
v+
k =

1

2

(
w+
k + w−k

)
, v−k =

1

2

(
w+
k −w−k

)
, k = 1, ...,M.

5. Construct the eigenvectors of A as

v̄+
k =

[
v+
k

v−k

]
, v̄−k =

[
v−k
v+
k

]
, k = 1, ...,M.

It should be remarked that if Av̄+
k = λ+

k v̄+
k with

λ+
k =
√
µk, k = 1, ...,M,

that is, [
A11v+

k + A12v−k
−A12v+

k −A11v−k

]
= λ+

k

[
v+
k

v−k

]
,

then there holds

Av̄−k =

[
A11v−k + A12v+

k

−A12v−k −A11v+
k

]
= −λ+

k

[
v−k
v+
k

]
= −λ+

k v̄−k .

Also note that the normalization condition imposed on w+
k is required for an explicit analytic determination of

the partial derivatives of the radiance field. The spectral decomposition of the matrix A is then

A = VΛV−1

with
V =

[
v̄+

1 , ..., v̄
+
M , v̄

−
1 , ..., v̄

−
M

]
and

Λ =



λ+
1 ... 0 0 ... 0

...

0 ... λ+
M 0 ... 0

0 ... 0 −λ+
1 ... 0

...

0 ... 0 0 ... −λ+
M


def
= diag

[
λ+
k ;−λ+

k

]
.

Returning to our conventional notation, that is, setting Ām,j for A and Vm,j for V, we express the matrix
exponential in equation (8.17) as

e−Ām,j4rj = Vm,jΛ
0
m,jV

−1
m,j , (8.19)

where the diagonal matrix Λ0
m,j is given by

Λ0
m,j = diag

[
a0

(
λ+
k4rj

)
; a0

(
−λ+

k4rj
)]

with
a0 (x) = e−x.

To compute the integrals involving the source term, we use the basic result∫
e−Ām,jρf (ρ) dρ = Vm,j

{∫
diag

[
a0

(
λ+
k ρ
)

; a0

(
−λ+

k ρ
)]
f (ρ) dρ

}
V−1
m,j
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with f being some scalar function of ρ and obtain

∫ 4rj
0

e−Ām,jρbm (ρ) dρ

= Vm,jΛ
1
m,jV

−1
m,j

(
4rjb̄th,m,j

)
+ Vm,jΛ

2
m,jV

−1
m,j

(
4rjb̄th,m,j+1

)
+Vm,jΛ

3
m,jV

−1
m,j

(
4rjb̄sun,m,j

)
. (8.20)

The diagonal matrices entering in equation (8.20) are given by

Λ1
m,j = diag

[
a1

(
λ+
k4rj

)
; a1

(
−λ+

k4rj
)]
,

Λ2
m,j = diag

[
a2

(
λ+
k4rj

)
; a2

(
−λ+

k4rj
)]
, (8.21)

Λ3
m,j = diag

[
b1
(
λ+
k4rj

)
; b1
(
−λ+

k4rj
)]
,

while the interpolation functions read as

a1 (x) =

∫ 1

0

ξe−xξ dξ =
1− (1 + x) e−x

x2
,

a2 (x) =

∫ 1

0

(1− ξ) e−xξ dξ =
x− 1 + e−x

x2
,

b1 (x) =

∫ 1

0

e−[ξτ sunext,j+(1−ξ)τ sunext,j+1]e−xξ dξ =
e−(τ sunext,j+x) − e−τ

sun
ext,j+1

τ sun
ext,j+1 − τ sunext,j − x

.

Inserting equations (8.19) and (8.20) into equation (8.17), we establish a first representation of the layer equa-
tion

im,j+1 = Vm,jΛ
0
m,jV

−1
m,jim,j −Vm,jΛ

1
m,jV

−1
m,j

(
4rjb̄th,m,j

)
−Vm,jΛ

2
m,jV

−1
m,j

(
4rjb̄th,m,j+1

)
−Vm,jΛ

3
m,jV

−1
m,j

(
4rjb̄sun,m,j

)
. (8.22)

For negative eigenvalues of the matrix Ām,j the arguments of the exponential functions in equation (8.21) are
positive and as a result the layer equation (8.22) is numerically unstable. This instability can be circumvented
if we left multiply equation (8.22) by V−1

m,j and scale the resulting equation by the diagonal matrix

Dm,j = diag
[
1; a0

(
λ+
k4rj

)]
.

We then obtain

Dm,jV
−1
m,jim,j+1

= Λ̄0
m,jV

−1
m,jim,j − Λ̄1

m,jV
−1
m,j

(
4rjb̄th,m,j

)
−Λ̄2

m,jV
−1
m,j

(
4rjb̄th,m,j+1

)
− Λ̄3

m,jV
−1
m,j

(
4rjb̄sun,m,j

)
(8.23)

with Λ̄pm,j = Dm,jΛ
p
m,j for all p = 0, ..., 3. Accounting of the identities

e−xa1 (−x) = a2 (x) , e−xa2 (−x) = a1 (x) ,

we find the following numerically stable representations of the diagonal matrices in equation (8.23):

Λ̄0
m,j = diag

[
a0

(
λ+
k4rj

)
; 1
]
,

Λ̄1
m,j = diag

[
a1

(
λ+
k4rj

)
; a2

(
λ+
k4rj

)]
,

Λ̄2
m,j = diag

[
a2

(
λ+
k4rj

)
; a1

(
λ+
k4rj

)]
, (8.24)

Λ̄3
m,j = diag

[
b1
(
λ+
k4rj

)
; b2
(
λ+
k4rj

)]
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with

b2 (x) = e−xb1 (−x) =
e−(τ sunext,j+1+x) − e−τ

sun
ext,j

τ sunext,j − τ sunext,j+1 − x
.

In compact notations the scaled layer equation (8.23) can be expressed as

A1
m,jim,j + A2

m,jim,j+1 = bm,j ,

where the layer quantities are given by

A1
m,j = Λ̄0

m,jV
−1
m,j ,

A2
m,j = −Dm,jV

−1
m,j ,

bm,j = Λ̄1
m,jV

−1
m,j

(
4rjb̄th,m,j

)
+ Λ̄2

m,jV
−1
m,j

(
4rjb̄th,m,j+1

)
+Λ̄3

m,jV
−1
m,j

(
4rjb̄sun,m,j

)
.

It should be remarked that the scaling process has a symmetry effect on the layer matrices A1
m,j and A2

m,j : the
matrices Λ̄0

m,j and Dm,j have a “complementary” diagonal structure.

8.2.5.6. Padé approximation

For optically thin layers the Padé approximation to the matrix exponential simplifies the algorithm implementa-
tion. Essentially, the pth diagonal Padé approximation to the exponential of the matrix A is given by

Q−1
p (−A) Qp (A) ,

where Qp (X) is a polynomial in X of degree p defined by

Qp (X) =

p∑
k=0

ckX
k, ck =

(2p− k)!p!

(2p)!k!(p− k)!
.

For an efficient application of the Padé approximation and under the assumption of optically thin layers, we
suppose a linear approximation of the source term

bm (ρ) =
ρ

4rj
b̄m,j +

(
1− ρ

4rj

)
b̄m,j+1

with the radiance level values being given by

b̄m,j = b̄th,m,j + b̄sun,m,je−τ
sun
ext,j ,

b̄m,j+1 = b̄th,m,j+1 + b̄sun,m,je−τ
sun
ext,j+1 .

In this context the first-order Padé approximation

e−Ām,j4rj ≈
(

I +
4rj

2
Ām,j

)−1(
I− 4rj

2
Ām,j

)
together with integral approximations

1

4rj

∫ 4rj
0

ρ

4rj
e−Ām,jρ dρ ≈ 1

2
I− 4rj

3
Ām,j +

4r2
j

8
Ā2
m,j (8.25)

and
1

4rj

∫ 4rj
0

(
1− ρ

4rj

)
e−Ām,jρ dρ ≈ 1

2
I− 4rj

6
Ām,j +

4r2
j

24
Ā2
m,j (8.26)
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give the layer equation
A1
m,jim,j + A2

m,jim,j+1 = bm,j

with

A1
m,j = I− 4rj

2
Ām,j ,

A2
m,j = −

(
I +
4rj

2
Ām,j

)
,

bm,j =

(
1

2
I− 4rj

12
Ām,j

)(
4rjb̄m,j

)
+

(
1

2
I +
4rj
12

Ām,j

)(
4rjb̄m,j+1

)
.

The integral approximations (8.25) and (8.26) have been obtained by considering a Taylor expansion of the
matrix exponential function, while the layer equation has been derived by left multiplying equation (8.17) with
I + (4rj/2) Ām,j . As in the case of the matrix eigenvalue method, this process leads to a symmetric form of
the layer matrices A1

m,j and A2
m,j .

The second-order Padé approximation

exp
{
−Ām,j4rj

}
≈

(
I +
4rj

2
Ām,j +

4r2
j

6
Ā2
m,j

)−1(
I− 4rj

2
Ām,j +

4r2
j

6
Ā2
m,j

)

in conjunction with the integral approximations (8.25) and (8.26) yield a similar equation with the layer quantities

A1
m,j = I− 4rj

2
Ām,j +

4r2
j

6
Ā2
m,j

A2
m,j = −

(
I +
4rj

2
Ām,j +

4r2
j

6
Ā2
m,j

)
,

bm,j =

(
1

2
I− 4rj

12
Ām,j +

4r2
j

24
Ā2
m,j

)(
4rjb̄m,j

)
+

(
1

2
I +
4rj
12

Ām,j +
4r2

j

24
Ā2
m,j

)(
4rjb̄m,j+1

)
.

The algorithm based on the first-order Padé approximation is essentially equivalent to the finite-difference
method.

8.2.5.7. System matrix of the entire atmosphere

The radiative transfer problem must be solved subject to the boundary conditions at the top of the atmosphere
and at the lower surface of the atmosphere. At the top of the atmosphere the down-welling diffuse radiation
vanishes and the boundary condition can be expressed in matrix form as

[0, I] im,1 = 0, (8.27)

where dim ([0, I]) = M × 2M . The surface boundary condition also possesses a matrix representation

[I,Rm] im,N = rm, (8.28)

where the entries of the reflection matrix and of the reflection vector are given by

[Rm]kl = −2Awl
∣∣µ−l ∣∣ ρnormm

(
µ+
k , µ

−
l

)
(8.29)
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and

[rm]k = δm0ε
(
µ+
k

)
B (rs)

+ (2− δm0)A
Fsun

π
|µsun| e−τ

sun
ext (|rs−rTOA|)ρnormm

(
µ+
k , µsun

)
, (8.30)

respectively. In equations (8.29) and (8.30) ε is the surface emissivity, A is the surface albedo and ρnormm are
azimuthal expansion coefficients of the normalized bi-directional reflection function.

Assembling the layer equations together with the boundary conditions (8.27) and (8.28) into the global matrix
of the entire atmosphere, leads to the matrix equation

Amim = bm

with dim (Am) = 2MN × 2MN . The organization of the system matrix Am and of the source vector bm is
shown in Table 1. As in the conventional approach the matrix Am has 3M − 1 sub- and super-diagonals and it
may be compressed into band-storage and then inverted using standard methods.

Am bm

row\column 2M 2M 2M ... 2M 2M
M [0, I] 0 0 ... 0 0 0

2M A1
m,1 A2

m,1 0 ... 0 0 bm,1

2M 0 A1
m,2 A2

m,2 ... 0 0 bm,2

... ... ... ... .. ... ... ...
2M 0 0 0 ... A1

m,N−1 A2
m,N−1 bm,N−1

M 0 0 0 ... 0 [I,Rm] rm

Table 8.1.: Organization of the system matrix and of the source vector for the entire atmosphere.

8.2.5.8. Weighting functions calculation

The retrieval of atmospheric constituents from satellite measurements requires the knowledge of the weighting
functions, i.e. the partial derivatives of the measured radiance with respect to the atmospheric parameters
being retrieved. The process of obtaining the set of partial derivatives which constitute the matrix of weighting
functions is commonly referred to as linearisation analysis.

The radiance measured by a satellite instrument can be expressed in the framework of the source integration
technique in terms of the solution of the radiative transfer equation In this regard the derivatives calculation
can be performed by linearising the radiative transfer equation with respect to the desired parameters.

The signal measured by a satellite instrument can be modelled by integrating the radiative transfer equation
along the line of sight. For a nadir viewing geometry with the line of sight bounded by the surface point S
and the point at the top of the atmosphere A, the diffuse radiance in the measurement direction Ωm can be
expressed as

I (rA,Ωm) = Iss (rA,Ωm) + Ims (rA,Ωm) , (8.31)

where
Iss (rA,Ωm) = Iss (rs,Ωm) e−τext(|rA−rs|) +

∫
|rA−rs|

Jss (r,Ωm) e−τext(|rA−r|)ds (8.32)

and

Ims (rA,Ωm) = Ims (rs,Ωm) e−τext(|rA−rs|) +

∫
|rA−rs|

Jms (r,Ωm) e−τext(|rA−r|)ds (8.33)
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are the single and the multiple scattering contributions, respectively, and

τext (|r1 − r2|) =

∫
|r1−r2|

σext (r′) ds′

is the extinction optical depth between the points r1 and r2. The single and the multiple scattering source
functions are defined by

Jss (r,Ω) = Fsun

σscat (r)

4π
P (r,Ω,Ωsun) e−τ

sun
ext (|r−rTOA|), (8.34)

Jms (r,Ω) =
σscat (r)

4π

∫
4π

P (r,Ω,Ω′) I (r,Ω′) dΩ′, (8.35)

while the surface values of the radiance fields are given by

Iss
(
rs,Ω

+
)

= Fsun

A

π
|µsun| ρnorm

(
Ω+,Ωsun

)
e−τ

sun
ext (|rs−rTOA|), (8.36)

Ims
(
rs,Ω

+
)

=
A

π

∫
2π

I
(
rs,Ω

−) ∣∣µ−∣∣ ρnorm (Ω+,Ω−
)

dΩ−. (8.37)

For a limb viewing geometry the boundary conditions (8.36) and (8.37) have to be replaced by homogeneous
boundary conditions.

For a numerical computation of the path integrals in equations (8.32) and (8.33) the atmosphere is discretized
in homogeneous layers. In this context the measured radiance I (rA,Ωm) can be regarded as a function of
some vector parameters, e.g. the layer values of the extinction and the scattering coefficients or of some
scalar parameters, e.g. the surface albedo. If ςi is an atmospheric parameter in the layer i, then equation
(8.31) yields

∂I

∂ςi
(rA,Ωm) =

∂Iss
∂ςi

(rA,Ωm) +
∂Ims
∂ςi

(rA,Ωm) .

The single scattering radiance satisfies the radiative transfer equation with the source function (8.34) and the
boundary condition (8.36). Integrating the differential equation along all paths of the line of sight bounded by
adjacent layers, we are led to a recurrence relation for the single scattering radiance. This recurrence relation
depends analytically on the layer values of the optical coefficients and on the surface albedo. As a result a
recurrence relation for the partial derivative of the single scattering radiance can be derived in a straightforward
manner.

In view of equations (8.33), (8.35) and (8.37) the multiple scattering radiance can be computed on a recursive
basis, which in turn leads to a recurrence relation for the partial derivatives ∂Ims/∂ςi along the boundary points
of the line of sight. This recursion requires the knowledge of the partial derivative of the radiance field in a
plane-parallel atmosphere and at all levels j, ∂Ij/∂ςi. To compute the level quantities ∂Ij/∂ςi we will use the
radiance solution computed in the framework of the discrete ordinate method with matrix exponential.

The matrix exponential formalism operates with the concept of the layer equation

A1
m,jim,j + A2

m,jim,j+1 = bm,j , (8.38)

which relates the level values of the radiance field

im,j =

[
i+m,j
i−m,j

]

with
[
i±m,j (r)

]
k

= Im (rj ,±µk), k = 1, ...,M .

The layer equation together with the boundary conditions at the top and the bottom of the atmosphere are
assembled into the global matrix of the entire atmosphere and the solution of the resulting system of equations
yields the level values of the radiance field.
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To compute the partial derivative with respect to the atmospheric parameter ςi we linearise the layer equation
(8.38) and obtain

A1
m,j

∂im,j
∂ςi

+ A2
m,j

∂im,j+1

∂ςi
=
∂bm,j
∂ςi

−
∂A1

m,j

∂ςi
im,j −

∂A2
m,j

∂ςi
im,j+1. (8.39)

As for radiance calculation all sets of derivative layer equations (8.39) are assembled into a global system
of equations for the entire atmosphere. It is worth to notice, that the system matrix for derivative calculation
coincides with the system matrix for radiance calculation; only the right-hand sides are different. In order
to increase the efficiency of the method we compute the partial derivatives with respect to all atmospheric
parameters of interest ςi, i = 1, ..., Nd, that is, we solve a system of equations with multiple right-hand sides. To
compute the partial derivatives of the layer quantities A1

m,j , A
2
m,j and bm,j we apply the chain rule. In the case

of Padé approximation, the derivatives calculation is trivial, but in the case of the matrix eigenvalue method we
are faced with the calculation of the partial derivatives of the eigenvector matrix V−1

m,j and of the eigenvalues
λk.

To compute ∂V−1
m,j/∂ςi and ∂λk/∂ςi we consider the eigenvalue problem for the matrix A+

A+w+
k = µkw

+
k .

For a fixed discrete ordinate index k we take the derivative with respect to ςi and obtain

∂A+

∂ςi
w+
k +A+ ∂w+

k

∂ςi
=
∂µk
∂ςi

w+
k + µk

∂w+
k

∂ςi
. (8.40)

Equation (8.40) is a system of M equations with M + 1 unknowns: the scalar ∂µk/∂ςi and the vector ∂w+
k /∂ςi.

Since the eigenvectors w+
k are normalized, we derive an additional equation

w+T
k

∂w+
k

∂ςi
= 0, (8.41)

which implies the compatibility of the system of equations. Using equations (8.40) and (8.41) the resulting
system of equations can be written in matrix form as[

w+
k µkI−A+

0 w+T
k

][
∂µk

∂ςi
∂w+

k

∂ςi

]
=

[
∂A+

∂ςi
w+
k

0

]
.

It is important to observe that we can solve the above system of equations for all atmospheric parameters ςi,
i = 1, ..., Nd, that is, we can solve the matrix equation[

w+
k µkI−A+

0 w+T
k

] ∂µk

∂ς1
... ∂µk

∂ςNd

∂w+
k

∂ς1
...

∂w+
k

∂ςNd

 =

[
∂A+

∂ς1
w+
k ... ∂A+

∂ςNd
w+
k

0 ... 0

]
.

If ∂µk/∂ςi is known, the partial derivative of λ+
k =
√
µk with respect to ςi follows immediately

∂λ+
k

∂ςi
=

1

2λ+
k

∂µk
∂ςi

.

To compute the partial derivative of w−k we use the definition (8.18) and apply the chain rule to obtain

∂w−k
∂ςi

=

(
− 1

λ+2
k

∂λk
∂ςi

)
A+w+

k +
1

λ+
k

∂A+

∂ςi
w+
k +

1

λ+
k

A+ ∂w+
k

∂ςi
.

Further calculations give

∂v+
k

∂ςi
=

1

2

(
∂w+

k

∂ςi
+
∂w−k
∂ςi

)
,
∂v−k
∂ςi

=
1

2

(
∂w+

k

∂ςi
−
∂w−k
∂ςi

)
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and
∂v̄+

k

∂ςi
=

[
∂v+

k

∂ςi
∂v−k
∂ςi

]
,
∂v̄−k
∂ςi

=

[
∂v−k
∂ςi
∂v+

k

∂ςi

]
.

Using now the definition of the Vm,j matrix we obtain

∂Vm,j

∂ςi
=

[
∂v̄+

1

∂ςi
, ...,

∂v̄+
M

∂ςi
,
∂v̄−1
∂ςi

, ....,
∂v̄−M
∂ςi

]
;

whence, taking into account that Vm,jV
−1
m,j = I, we end up with

∂V−1
m,j

∂ςi
= −V−1

m,j

∂Vm,j

∂ςi
V−1
m,j .

The calculation of the partial derivatives for Nd atmospheric parameters and a specific solar zenith angle
requires the solution of a system of equations with Nd + 1 right-hand sides; while, in the matrix eigenvalue
method, a system of equations with M + 1 unknowns has to be solved additionally for each layer.

8.2.6. Picard iteration

Different methods have been developed to solve the multiple scattering problem in a spherical atmosphere.
These include an order of scattering solution method, finite difference method in conjunction with a combined
differential-integral approach and the Monte Carlo method. In this Section we analyse several versions of the
Picard iteration for solving the radiative transfer equation in a spherical atmosphere.

To compute the limb radiance at the top of the atmosphere we use the integral form of the radiative transfer
equation

I (r,Ω) = I (rr,Ω) e−τext(|r−rr|) + Iss (r, rr,Ω) + Ims (r, rr,Ω) , (8.42)

where rr is a reference point and derive a recurrence relation for the diffuse radiance at a set of discrete points
along the line of sight. The recurrence relation then takes the form

I (rp,Ω) = I (rp+1,Ω) exp (−τp) + Iss (rp, rp+1,Ω) + Ims (rp, rp+1,Ω) , (8.43)

where {rp}Np

p=1 is the set of intersection points of the line of sight with a sequence of spherical surfaces. In
a single scattering model the multiple scattering contribution Ims is neglected, while in a multiple scattering
model this term has to be included in the computation. Our further analysis is focused on the computation of
the multiple scattering contribution Ims, which in turns requires the computation of the diffuse radiance at the
limb points rp, p = 1, 2, ..., Np.

We choose a global coordinate system by directing the Z-axis along the solar direction, since this choice
leads to an axis-symmetric radiation field. At each point on the line of sight the local coordinate system is
chosen as the local spherical coordinate system. The polar angles θ and ϕ of the direction Ω are specified in
the local coordinate system. By convention the first quadrant of the local coordinate system corresponds to
θ ∈ (0, π/2) and ϕ ∈ (−π/2, π/2), the second quadrant to θ ∈ (0, π/2) and ϕ ∈ (π/2, 3π/2), the third quadrant
to θ ∈ (π/2, π) and ϕ ∈ (π/2, 3π/2) and finally, the fourth quadrant to θ ∈ (π/2, π) and ϕ ∈ (−π/2, π/2).

Because the problem is axis-symmetric, i.e. I (r,Θ,Ψ,Ω) = I (r,Θ,Ω), a two-dimensional Picard iteration can
be used to compute the radiances at a set of discrete points in the azimuthal plane Ψ = 0. The domain of
analysis is shown in Fig. 8.8 and is given by:

D = {(r,Θ,Ψ) / r ∈ [rs, rTOA] , Θ ∈ [0,Θshd] , Ψ = 0} ,

where rs is the lowest (surface) point of the atmosphere, rTOA is the radius at the top of the atmosphere and Θshd

is the polar angle at which the shadow region begins. Along the radial line Θ = 0 we consider axis-symmetric
boundary conditions

I (r,Θ = 0, θ, ϕ) = I (r,Θ = 0, θ, ϕ+ π) , ϕ ∈ (−π/2, π/2) , (8.44)
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while along the radial line Θ = Θshd we assume homogeneous boundary conditions (for the radiances pointing
into the domain)

I (r,Θ = Θshd, θ, ϕ) = 0, ϕ ∈ (π/2, 3π/2) . (8.45)

The domain of analysis is discretized in Nr optically homogeneous spherical shells with radii ri in decreasing
order, i.e. r1 = rTOA > r2 > ... > rNr = rs, while the zenith direction is discretized in NΦ equidistant radial lines.
The local direction of the radiance in each grid point is discretized in NθNϕ discrete ordinates, where Nθ is the
number of zenith directions and Nϕ is the number of azimuthal directions.

shd

Z

O

axisymmetric BC

homogeneous BC

max

independent BC

min

TOA

Earth

X

Figure 8.8.: Domain of analysis and boundary conditions.

The radiative transfer equation

dI
ds

(r,Ω) = −σext (r) I (r,Ω) + Jss (r,Ω) + Jms (r,Ω)

with

Jss (r,Ω) =
Fsun

4π
S (r,Ω,Ωsun) e−τ

sun
ext (|r−rTOA(r)|),

Jms (r,Ω) =
1

4π

∫
4π

S (r,Ω,Ω′) I (r,Ω′) dΩ′

is of the form I = f (I) and the Picard iteration technique based on a fixed-point iteration is appropriate for
its numerical solution: if the sequence I(n+1) = f

(
I(n)

)
converges to I and the function f is continuous, then

there holds f
(
I(n)

)
→ f (I), which, in turn, yields I = f (I). Thus, at the iteration step n the recurrence relation

for computing the radiance at the generic point r and along the characteristic Ω read as

I(n+1) (r,Ω) = I(n+1) (rr,Ω) e−τext(|r−rr|) + Iss (r, rr,Ω) + I(n)
ms (r, rr,Ω) , (8.46)
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where essentially r stands for the grid point rij = (ri,Θj ,Ψ = 0) with i = 1, ..., Nr and j = 1, ..., NΦ and Ω for
the discrete ordinate direction Ωkl = (θk, ϕl) with k = 1, ..., Nθ and l = 1, ..., Nϕ.

In the long characteristic method the reference point is the intersection point of the characteristic with the
model boundary D (Fig. 8.9). The radiance at the generic grid point is computed on a recursive basis by
considering the intersection of the characteristic with a set of spherical surfaces {rq}Nq

q=1, for which it holds true
that r1 = rr > r2 > ... > rNq

= r. The recurrence relation is as in equation (8.43), but with p replaced by q. The
radiance at the reference point I(n+1) (rr,Ω) is used to initialize the recursion and is specified by the model
boundary radiance. The multiple scattering radiance I(n)

ms (rq,Ω) at the characteristic point rq is computed by
a linear interpolation in the spatial and the discrete-ordinate domains using the grid point values I(n)

ms (rij ,Ωkl).
The single scattering contribution Iss (rq, rq+1,Ω) is calculated at all stages of the characteristic without any
interpolation.

In the short characteristic method the reference point is the intersection point of the characteristic with the cell
boundary (Fig. 8.9). The radiance at the generic point is computed accordingly to equation (8.46), where the
radiance at the reference point I(n+1) (rr,Ω) is determined via a linear interpolation of the grid point values of
the face pierced by the characteristic. As before the multiple scattering radiance I

(n)
ms (rr,Ω) is computed by

linear interpolation, while the single scattering contribution Iss (r, rr,Ω) is calculated in an exact manner.

The number of iterations required to attain convergence can be reduced by an appropriate choice of the initial
estimate. For each radial line Θj ≤ Θlim, where Θlim / 90°, we compute the initial radiance field by using
a one-dimensional model. Because the calculations are performed individually for each radial line (or solar
zenith angle), this model is equivalent to the independent pixel approximation for three-dimensional radiative
transfer in clouds.

r

e r

e
r r

O


r r

M
M r

M r

long characteristic
short characteristic

Figure 8.9.: Long and short characteristics.

The short and the long characteristic Picard iteration involves the following steps:

1. Consider a two-dimensional discretization of the domain of analysis D.

2. Compute the initial estimate I (rij ,Ωkl) at all radial lines Θj ≤ Θlim by using the independent pixel
approximation and initialize the radiances at all radial lines Θshd ≥ Θj > Θlim to zero.

3. Determine the single scattering contribution Iss at all grid points and in all discrete ordinate directions.

4. Calculate the grid values of the multiple scattering radiance Ims (rij ,Ωkl).
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5. Beginning downward for each layer i = 1, ..., Nr − 1 compute the radiances at the lower nodes for all
discrete ordinates in the third and fourth quadrant and at all radial lines. For the boundary cells take into
account the boundary conditions (8.44) and (8.45).

6. Compute the upward radiances at the bottom of the domain by using the boundary conditions for a
Lambertian surface.

7. Working upwards repeat the calculations of step 5, but compute the radiances at the upper nodes for all
discrete ordinates in the first and second quadrant.

8. Interpolate the radiances at each point rp of the line of sight by using the grid radiance values of the cell
containing the point.

9. Compute the multiple scattering contribution Ims (rp, rp+1,Ω) at all stages of the line of sight.

10. Repeat steps 4-9 until the maximum change in the multiple scattering contributions is smaller than some
preassigned error values at all stages of the line of sight.

Steps 4-7 represent one Picard iteration. A specific feature of the above method is that the grid values of the
multiple scattering radiance Ims (rij ,Ωkl) are computed before starting the downward and the upward recur-
rences, and are implicitly determined by the grid radiance values I (rij ,Ωkl) at the previous Picard iteration.
This technique works well for the long characteristic method, but yields a slow convergence rate for the short
characteristic method. To remedy this drawback we use an iterative scheme, in which we update the multiple
scattering radiances at each layer calculation. For example, in the case of the downward recurrence we first
compute the multiple scattering radiances at the top of the layer and then proceed to calculate the radiances
at the bottom of the layer. The multiple scattering radiances then include the values of the grid radiances in the
third and fourth quadrant at the actual Picard iteration. By convention this version of the Picard iteration will be
called the accelerated short characteristic method.

A further reduction of the computation time can be achieved by using the following approximate model: instead
of solving the radiative transfer problem on the domain D, we solve the problem on the reduced domain

Dr = {(r,Θ,Ψ) / r ∈ [rs, rTOA] , Θ ∈ [Θmin,Θmax] , Ψ = 0}

with Θmin < Θp < Θmax for all p = 1, 2, ..., Np. The reduced domain of analysis is illustrated in Fig. 8.8. The
values of the diffuse radiance pointing into the domain (the boundary values along the radial lines Θ = Θmin

and Θ = Θmax) are computed by using the pseudo-spherical model and remain unchanged during the iterative
process. Thus, the boundary lines become independent of the interior cells and the radiance at their grid points
serves as the boundary radiance for the interior points. This type of boundary conditions is known as open
boundaries. Therefore this method will be referred to as the Picard iteration method with open boundaries.

8.3. Inversion methods

Most of the inverse problems arising in atmospheric remote sensing are non-linear. In this chapter we discuss
the practical aspects of Tikhonov regularization for solving the non-linear problem

F (x) = y, (8.47)

where, due to the complexity of the radiative transfer, the forward model is computed by using a numerical
model. The non-linear system of equations (8.47) is called a discrete ill-posed problem because the underlying
continuous problem is ill-posed. If we accept a characterization of ill-posedness via linearisation, the condition
number of the Jacobian matrix K (x) = F′ (x) may serve as a quantification of ill-posedness. The right-hand
side y of (8.47) is supposed to be contaminated by measurement errors and we have the representation

yδ = y + δ,

where yδ is the noisy data and δ is the noise vector. In a deterministic setting the error is characterized by
the noise level ∆, while in a semi-stochastic setting δ is assumed to be a discrete white noise vector with the
covariance matrix Cδ = σ2Im.
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8.3.1. Tikhonov regularization

The formulation of Tikhonov regularization for non-linear problems is straightforward: the equation (8.47) is
replaced by a minimization problem involving the objective function

F (x) =
1

2

[∥∥F (x)− yδ
∥∥2

+ α ‖L (x− xa)‖2
]
. (8.48)

For a positive regularization parameter minimizers of the Tikhonov function always exists (but are not unique)
and a global minimizer xδα is called a regularized solution.

In this Section we review appropriate optimization methods for minimizing the Tikhonov function, discuss prac-
tical algorithms for computing the new iterate and characterize the solution error. Finally, we analyse the
performances of the Tikhonov regularization with a priori, a posteriori and error-free parameter choice meth-
ods.

8.3.1.1. Inversion models

For retrieval problems in the visible spectral region we consider two inversion models. The first inversion model
is the radiance model

Rmeas (λ, h) ≈ Pampl

(
λ,pampl, h

)
Rsim (λ,x, h) , (8.49)

where λ is the wavelength, Pampl is a polynomial of low order with coefficients pampl and R stands for the
“scan-ratioed” radiance ratio, that is, the radiance profile normalized with respect to a reference tangent height

R (·, h) =
I (·, h)

I (·, href)
. (8.50)

The normalization procedure removes the need to measure the exoatmospheric solar irradiance and the abso-
lute instrument calibration. This is similar to the self-calibration feature of the limb occultation method, where
the unattenuated solar radiation is measured outside the atmosphere. In addition, there is a reduction in the
effect of the surface reflectance and clouds that can control the diffuse radiation even at high altitudes. The
normalization procedure does not completely remove the effect of the surface albedo, but does reduce the
accuracy to which the algorithm must model this effect. The closure term Pampl is intended to account on
the contribution from aerosols with smooth spectral signature. The second inversion model is the differential
radiance model

ln R̄meas (λ, h) ≈ ln R̄sim (λ,x, h) (8.51)

with
ln R̄sim (λ,x, h) = lnRsim (λ,x, h)− Psim (λ,psim, h)

and
ln R̄meas (λ, h) = lnRmeas (λ, h)− Pmeas (λ,pmeas, h) .

For any x the simulated smoothing polynomial Psim of coefficients psim = psim (x) and the measurement
smoothing polynomial Pmeas of coefficients pmeas, are defined by

psim = arg min
p
‖lnRsim (·,x, h)− Psim (·,p, h)‖2

and
pmeas = arg min

p
‖lnRmeas (·, h)− Pmeas (·,p, h)‖2 ,

respectively. In general,a smoothing polynomial is assumed to account on the low frequency structure due
to the scattering mechanism, in which case ln R̄ will mainly reflects the absorption process due to the gas
molecules.

The choice of the inversion model is a very important task of the retrieval process, because an appropriate
formulation may considerably reduce the non-linearity of the problem. In a stochastic framework the degree of
non-linearity can be examined by comparing the forward model with its linearisation within the a priori variability.
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For this purpose we assume that x is a random vector characterized by a Gaussian a priori probability density
function with mean xa and covariance matrix Cx. In the x-space the ellipsoid

(x− xa)
T

C−1
x (x− xa) = 1

represents the contour of the a priori covariance, outlining the region within which the state vector is likely to
lie. Considering the linear transformation

z = Σ−1/2
x VT

x (x− xa) ,

where Cx = VxΣxV
T
x , we observe that in the z-space the contour of the a priori covariance is a sphere of

radius 1 centred at the origin, that is, zT z = 1. The points z±k =
[

0, ..., ±1, ..., 0
]T

represents the
intersection of the sphere with the coordinate axes and delimit the region to which the state vector belongs. In
the x-space these boundary points are given by

x±k = xa + VxΣ
1/2
x z±k = xa ± ck,

where the vectors ck, defined by the decomposition VxΣ
1/2
x = [c1, ..., cn], represent the error patterns for the

covariance matrix Cx. The size of the linearisation error

R (x) = F (x)− F (xa)−K (xa) (x− xa)

can be evaluated through the quantity

εlink =
1

mσ2
‖R (xa ± ck)‖2 .

If εlink ≤ 1 for all k, then the inverse problem is said to be linear to the accuracy of the measurements within
the normal range of variation of the state. Numerical simulations have shown that the differential radiance
model (8.51) yields a smaller linearisation error than the radiance model (8.49). For this reason the differential
radiance model will be adopted in our simulations.

8.3.1.2. Optimization methods for the Tikhonov function

In the framework of Tikhonov regularization the regularized solution xδα is computed by minimizing the function

F (x) =
1

2

[∥∥F (x)− yδ
∥∥2

+ α ‖L (x− xa)‖2
]
, (8.52)

where the factor 1/2 has been included in order to avoid the appearance of a factor two in the derivatives. The
general minimization problem can be formulated as the least-squares problem

F (x) =
1

2
‖f (x)‖2 , (8.53)

where the augmented vector f is given by

f (x) =

[
F (x)− yδ
√
αL (x− xa)

]
.

The regularized solution can be computed by using optimization methods for unconstrained minimization prob-
lems. Essentially, optimization tools are iterative methods, which use the Taylor expansion to compute ap-
proximations to the objective function at all points in the immediate neighbourhood to the current iterate. For
Newton–type methods the quadratic model

M (p) = F (x) + gT (x) p +
1

2
pTG (x) p (8.54)
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is used as a reasonable approximation to the objective function. In (8.54) g and G are the gradient and the
Hessian of F , that is,

g (x) = ∇F (x) = KT
f (x) f (x)

and
G (x) = ∇2F (x) = KT

f (x) Kf (x) + Q (x) ,

where

Kf (x) = f ′ (x) =

[
K (x)
√
αL

]
is the Jacobian matrix of f and

Q (x) =
∑
i

fi (x) Gi (x)

with Gi = ∇2fi being the Hessian of fi is the second–order derivative term. Although the objective function
(8.53) can be minimized by a general method, in most circumstances the special forms of the gradient and the
Hessian make it worthwhile to use methods designed specifically for least-squares problems.

Non-linear optimization methods can be categorized into two broad classes: “step-length-based methods” and
“trust-region methods”.

Step–length methods

For an iterative method it is important to have a measure of progress in order to decide whether a new iterate
xδk+1α is better than the current iterate xδkα. A natural measure of progress is to require a decrease of F at
every iteration and to impose the descent condition

F
(
xδk+1α

)
< F

(
xδkα

)
.

A method that impose this condition is termed a descent method. A step–length–based algorithm requires the
computation of a vector pδkα called the search direction and the calculation of a positive scalar τk, the step
length, for which it holds that

F
(
xδkα + τkp

δ
kα

)
< F

(
xδkα

)
.

To guarantee that the objective function F can be reduced at the kth iteration step, the search direction pδkα
should be a descent direction at xδkα, that is, the inequality

gT
(
xδkα

)
pδkα < 0

should hold true.

In the steepest-descent method for general optimization the objective function is approximated by a linear
model and the search direction is taken as

pδkα = −g
(
xδkα

)
.

The negative gradient−g
(
xδkα

)
is termed the direction of steepest descent and, evidently, the steepest-descent

direction is a descent direction (unless the gradient vanishes) since

gT
(
xδkα

)
pδkα = −

∥∥g (xδkα)∥∥2
< 0.

The convergence rate of the steepest-descent method is linear and a method yielding a super-linear conver-
gence rate is the Newton method.

In the Newton method the objective function is approximated by the quadratic model (8.54) and the search
direction pδkα, which minimizes the quadratic function, solves the so called Newton equation

G
(
xδkα

)
p = −g

(
xδkα

)
. (8.55)

If the Hessian G
(
xδkα

)
is positive definite, only one iteration is required to reach the minimum of the model

function (8.54) from any starting point and we expect good convergence from Newton’s method when the
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quadratic model is accurate. For a general non-linear function Newton’s method converges quadratically to
the minimizer xδα if the initial guess is sufficiently close to xδα, the Hessian matrix is positive definite at xδα and
the step lengths {τk} converges to unity. Note that when G

(
xδα
)

is positive definite, the solution of (8.55) is a
descent direction, since

gT
(
xδkα

)
pδkα = −gT

(
xδkα

)
G−1

(
xδkα

)
g
(
xδkα

)
< 0

holds true.

In the Gauss-Newton method for least–squares problems it is assumed that the first-order term KT
f Kf in the

expression of the Hessian dominates the second-order term Q. This assumption is not justified when the
residuals at the solution are very large, i.e. roughly speaking, when the residual

∥∥f (xδα)∥∥ is comparable to the
largest eigenvalue of KT

f

(
xδα
)
Kf

(
xδα
)
. For small residual problems the search direction solves the equation

KT
f

(
xδkα

)
Kf

(
xδkα

)
p = −KT

f

(
xδkα

)
f
(
xδkα

)
(8.56)

and possesses the variational characterization

pδkα = arg min
p

∥∥Kf

(
xδkα

)
p + f

(
xδkα

)∥∥2
. (8.57)

The vector that solves (8.56) or (8.64) is called the Gauss-Newton direction and if Kf is of full column rank,
then the Gauss-Newton direction is uniquely and approaches the Newton direction as

∥∥Q (xδα)∥∥ tends to zero.
Consequently, if

∥∥f (xδα)∥∥ is zero and the columns of K
(
xδα
)

are linearly independent, the Gauss-Newton
method can ultimately achieve a quadratic rate of convergence, despite the fact that only first derivatives are
used to compute pδkα.

For large–residual problems the term
∥∥f (xδα)∥∥ is not small and the second–order term Q cannot be neglected.

In fact, a large-residual problem is one in which the optimal residual
∥∥f (xδα)∥∥ is large relative to the small

eigenvalues of KT
f

(
xδα
)
Kf

(
xδα
)
, but not with respect to its largest eigenvalue. One possible strategy for large-

residual problems is to include a quasi-Newton approximation Q̄
(
xδkα

)
to the second–order derivative term

Q
(
xδkα

)
and to compute the search direction by solving the equation[

KT
f

(
xδkα

)
Kf

(
xδkα

)
+ Q̄

(
xδkα

)]
p = −KT

f

(
xδkα

)
f
(
xδkα

)
. (8.58)

Quasi-Newton methods are based on the idea of building up curvature information as the iterations proceed
using the observed behaviour of the objective function and of the gradient. The initial approximation of the
second–order derivative term is usually taken as zero and, with this choice, the first iteration of the quasi-
Newton method is equivalent to an iteration of the Gauss–Newton method. After xδk+1α has been computed,
a new approximation of Q̄

(
xδk+1α

)
is obtained by updating Q̄

(
xδkα

)
to take into account the newly-acquired

curvature information. An update formula read as

Q̄
(
xδk+1α

)
= Q̄

(
xδkα

)
+ Uk,

where the update matrix Uk is usually chosen as a rank–one matrix. The standard condition for updating
Q̄ is known as the quasi–Newton condition and requires that the Hessian should approximate the curvature
of the objective function along the change in x during the kth iteration. The most widely used quasi-Newton
scheme, which satisfies the quasi–Newton condition and possesses the property of hereditary symmetry, is
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

Q̄
(
xδk+1α

)
= Q̄

(
xδkα

)
− 1

sTkW
(
xδkα

)
sk

W
(
xδkα

)
sks

T
kW

(
xδkα

)
+

1

hTk sk
hkh

T
k , (8.59)

where
sk = xδk+1α − xδkα

is the change in x during the kth iteration

hk = g
(
xδk+1α

)
− g

(
xδkα

)
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is the change in gradient and

W
(
xδkα

)
= KT

f

(
xδk+1α

)
Kf

(
xδk+1α

)
+ Q̄

(
xδkα

)
.

A step-length procedure is frequently included in Newton–type methods because a step of unity along the
Newton direction will not necessarily reduce the objective function, even though it is the step to the minimum
of the function. The main requirements of a step-length algorithm can be summarized as follows: if x and p
denote the actual iterate and the search direction, respectively, then

1. the average rate of decrease from F (x) to F (x + τp) should be at least some prescribed fraction of the
initial rate of decrease in that direction

F (x + τp) ≤ F (x) + εfτg
T (x) p, εf > 0;

2. the rate of decrease of F in the direction p at x + τp should be larger than some prescribed fraction of
the rate of decrease in the direction p at x

gT (x + τp) p ≥ εggT (x) p, εg > 0.

The first condition guarantees a sufficient decreases in F values relative to the length of the step, while the
second condition avoids too small steps relative to the initial rate of decrease of F . The condition εg > εf
implies that both conditions can be satisfied simultaneously. In practice, the second condition is not needed
because the use of a backtracking strategy avoids excessively small steps.

Since computational experience has shown the importance of taking a full step whenever possible, the modern
strategy of a step-length algorithm is to start with τ = 1 and then, if x+p is not acceptable, “backtrack” (reduce
τ ) until an acceptable x+τp is found. The implemented backtracking step-length algorithm uses only condition
(1) and is based on quadratic and cubic interpolation. On the first backtracking the new step length is selected
as the minimizer of the quadratic interpolation function mq (τ), satisfying the conditions

mq (0) = F (x) , m′q (0) = gT (x) p, mq (1) = F (x + p)

but being constrained to be larger than ε1 = 0.1 of the old step length. On all subsequent backtracks the new
step length is chosen by using the values of the objective function at the last two values of the step length.
Essentially, if τ and τprev are the last two values of the step length, the new step length is computed as the
minimizer of the cubic interpolation function mc (τ), satisfying the conditions

mc (0) = F (x) , m′c (0) = gT (x) p,

and
mc (τ) = F (x + τp) , mc

(
τprev

)
= F

(
x + τprevp

)
,

but being constrained to be larger than ε1 = 0.1 and smaller than ε2 = 0.5 of the old step length.

Trust–region methods

In a trust region method the step length τk is taken as unity, so that the new iterate is defined by

xδk+1α = xδkα + pδkα.

For this reason the term “step” is often used to designate the search direction pδkα. In order to ensure that the
descent condition holds, it must be necessary to compute several trial vectors before finding a satisfactory pδkα.
The most common mathematical formulation of this idea computes the trial step pδkα by solving the constrained
minimization problem

min
p
Mk (p) subject to ‖p‖ ≤ Γk, (8.60)
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whereMk is the quadratic model (8.54) at the current iterate xδkα and Γk is the trust region radius. Assuming
that the solution occurs on the boundary of the constrained region, the minimization of the Lagrangian

L (p, λ) = F
(
xδkα

)
+ gT

(
xδkα

)
p +

1

2
pTG

(
xδkα

)
p +

1

2
λ
(
‖p‖2 − Γ2

k

)
yields the first–order optimality conditions[

G
(
xδkα

)
+ λIn

]
pλ = −g

(
xδkα

)
(8.61)

and
‖pλ‖2 = Γ2

k. (8.62)

Particularizing the trust-region method for general minimization to least-squares problems with a Gauss–
Newton Hessian approximation, we deduce that the search direction solves the equation[

KT
f

(
xδkα

)
Kf

(
xδkα

)
+ λIn

]
pλ = −KT

f

(
xδkα

)
f
(
xδkα

)
, (8.63)

while the Lagrange parameter λ solves the equation (8.62). For comparison with the Gauss-Newton method
we note that the solution of (8.63) is a solution of the linear regularized least-squares problem

pδkα = arg min
p

[∥∥Kf

(
xδkα

)
p + f

(
xδkα

)∥∥2
+ λ ‖p‖2

]
. (8.64)

If λ is zero, pδkα is the Gauss-Newton direction as λ → ∞, pδkα becomes parallel to the steepest-descent
direction −g

(
xδkα

)
.

Generally, a trust-region algorithm uses the predictive reduction in the linearised model (8.54)

∆Fpredk =Mk (0)−Mk

(
pδkα

)
(8.65)

and the actual reduction in the objective function

∆Fk = F
(
xδkα

)
−F

(
xδkα + pδkα

)
(8.66)

to decide whether the trial step pδkα is acceptable and how the next trust-region radius is chosen. The heuristic
to update the size of the trust region usually depends on the ratio of the expected change in F to the predicted
change

rk =
∆Fk

∆Fpredk
.

The trust-region algorithm finds a new iterate and produces a trust-region radius for the next global iteration.
The algorithm starts with the calculation of the trial step p for the actual trust-region radius (c.f. equations
(8.62) and (8.63) ) and with the computation of the prospective iterate xnew = x + p and of the objective
function F (xnew). Then, depending on the average rate of decrease of the objective function, the following
situations may appear:

1. If F (xnew) ≥ F (x)+εfg
T (x) p, then the step is unacceptable. In this case, if the trust-region radius is too

small, the algorithm terminates with xnew = x. If not, the step length τmin is computed as the minimizer of
the quadratic interpolation function mq (τ), satisfying the conditions

mq (0) = F (x) , m′q (0) = gT (x) p, mq (1) = F (x + p)

and the new radius is chosen as τmin ‖p‖ but constrained to be between ε1Γ = 0.1 and ε2Γ = 0.5 of the
old radius.

2. If F (xnew) < F (x) + εfg
T (x) p, then the step is acceptable and the reduction of the objective function

predicted by the quadratic model

4Fpred = −gT (x) p− 0.5 ‖Kf (x) p‖2

is computed. If ∆F and 4Fpred agree to within a prescribed tolerance or negative curvature is indicated,
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then the trust-region radius is increased and the while-iteration loop is continued. If not, xnew is accepted
as the new iterate and the trust-region radius is updated for the next global iteration.

Stopping criteria

In a deterministic setting the standard stopping criteria for unconstrained minimization are:

1. the relative gradient test

max
i

∣∣∣∣∣
[
g
(
xδkα

)]
i
maxi

{∣∣[xδkα]i∣∣ , typ [x]i
}

max
{∣∣F (xδkα)∣∣ , typF

} ∣∣∣∣∣ ≤ εg,
2. the absolute function convergence test

F
(
xδkα

)
< εfa,

3. the relative function convergence test

F
(
xδkα

)
−F

(
xδk+1α

)
F
(
xδkα

) ≤ εfr,

4. the X-convergence test
maxi

{∣∣∣[xδk+1α

]
i
−
[
xδkα

]
i

∣∣∣}
maxi

{∣∣∣[xδk+1α

]
i

∣∣∣ , typ [x]i

} ≤ εx.
It should be mentioned that the problem of measuring relative change when the argument z is near zero is
addressed by substituting z with max {|z| , typz}, where typz is an user’s estimate of a typical magnitude of z.
Also note that in the PORT optimization routines the X-convergence test is expressed as

maxi

{∣∣∣[xδk+1α

]
i
−
[
xδkα

]
i

∣∣∣}
maxi

{∣∣∣[xδk+1α

]
i

∣∣∣+
∣∣[xδkα]i∣∣} ≤ εx. (8.67)

In a stochastic framework the absolute and relative function convergence test are formulated as

χ2
(
F
(
xδkα

)
− yδ

)
≤ m

and
χ2
(
F
(
xδkα

)
− yδ

)
− χ2

(
F
(
xδk+1α

)
− yδ

)
χ2
(
F
(
xδkα

)
− yδ

) ≤ εfr,

respectively, while the X-convergence test read as(
xδk+1α − xδkα

)T
Ĉ−1

x

(
xδk+1α − xδkα

)
n

≤ εx,

where
χ2
(
F
(
xδkα

)
− yδ

)
=
[
F
(
xδkα

)
− yδ

]T
C−1
δ

[
F
(
xδkα

)
− yδ

]
,

Cδ is the measurement error covariance and Ĉx is the a posteriori covariance. If Cδ = σ2Im, then the absolute
function convergence test is equivalent to the discrepancy principle for the square residual norm∥∥rδkα∥∥2

=
∥∥F (xδkα)− yδ

∥∥2
.

Because in practical applications the estimation of the covariance matrices is problematic, we suggest to use
the X-convergence test as in (8.67) and the relative function convergence test as in a deterministic setting, but
with the residual norm

∥∥rδkα∥∥2 in place of the Tikhonov function F
(
xδkα

)
. For a data model with white noise this

test will be also valid in a stochastic setting.
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8.3.1.3. Practical methods for computing the new iterate

A step-length based method for minimizing the Tikhonov function is of the form of the following model algorithm:

1. compute the search direction;

2. compute the step length (see 8.3.1.2);

3. terminate the iterative process accordingly to the X-convergence criterion or the relative function conver-
gence test.

The step-length procedure is optional, but our experience demonstrates that this step improves the stability of
the method and reduce the number of iterations. In this Section we concern with the computation of the search
direction pδkα or, more precisely, with the computation of the new iterate xδk+1α = xδkα + pδkα. Certainly, if a
step-length procedure is a part of the inversion algorithm, then xδk+1α is the prospective iterate, but we prefer
to use the term “new iterate” because it is frequently encountered in remote sensing community.

Using the explicit expressions of the augmented vector f and of its Jacobian Kf, we deduce that the Gauss-
Newton step pδkα solves the equation (cf. (8.56))

(
KT
kαKkα + αLTL

)
p = −KT

kα

[
F
(
xδkα

)
− yδ

]
− αLTL

(
xδkα − xa

)
with Kkα = K

(
xδkα

)
. The new iterate then takes the form

xδk+1α = xδkα + pδkα = xa + K†kαyδk, (8.68)

where
K†kα =

(
KT
kαKkα + αLTL

)−1
KT
kα

and
yδk = yδ − F

(
xδkα

)
+ Kkα

(
xδkα − xa

)
(8.69)

are the generalized inverse and the noisy data at the iteration step k, respectively.

In order to give a more practical interpretation of the Gauss-Newton iterate (8.68), we consider a linearisation
of F about xδkα

F (x) = F
(
xδkα

)
+ Kkα

(
x− xδkα

)
+ R

(
x,xδkα

)
.

If x† is a solution of the equation F (x) = y, then x† also solves the equation

Kkα

(
x† − xa

)
= yk,

where
yk = y − F

(
xδkα

)
+ Kkα

(
xδkα − xa

)
−R

(
x†,xδkα

)
is the exact data at the iteration step k. Because yk is unknown, we consider the equation

Kkα (x− xa) = yδk (8.70)

with yδk being given by (8.69). Evidently, the noise in the data is due to the measurement noise and the
linearisation error and we have the representation

yδk − yk = δ + R
(
x†,xδkα

)
.

Because the non-linear problem is ill-posed, its linearisation is also ill-posed and we solve the linear equation
(8.70) by means of Tikhonov regularization with a penalty term of the form Ω (x) = ‖L (x− xa)‖. The Tikhonov
function for the linear sub-problem takes the form

Flk (x) =
∥∥yδk −Kkα (x− xa)

∥∥2
+ α ‖L (x− xa)‖2

and as in (8.68) the new iterate is given by xδk+1α = xa + K†kαyδk. Thus, the solution of a non-linear ill–
posed problem by means of Tikhonov regularization is equivalent to the solution of a sequence of ill–posed
linearisation of the forward model about the current iterate.
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The new iterate can be computed by using the GSVD of the matrix pair (Kkα,L). Although the GSVD is
of great theoretical interest for analysing general-form regularization problems, it is of computational interest
only for small- and medium-sized problems. The reason is that the computation of the GSVD of the matrix
pair (Kkα,L) is quite demanding; the conventional implementation requires about 2m2n+15n3 operations. For
practical solutions of large-scale regularization problems it is much simpler to deal with standard-from problems
in which L = In. The regularization in standard form relies on the solution of the linear equation

K̄kα 4 x̄ = yδk (8.71)

with K̄kα = KkαL−1 and
4x = x− xa = L−1 4 x̄

by means of Tikhonov regularization with L = In. Considering the SVD of the Jacobian matrix K̄kα = UΣVT ,
the solution of the standard-form problem(

K̄T
kαK̄kα + αIn

)
4 x̄ = K̄T

kαyδk (8.72)

is given by

4x̄δk+1α =

n∑
i=1

σi
σ2
i + α

(
uTi yδk

)
vi.

An efficient implementation of Tikhonov regularization for large-scale problems, which also take into account
that we wish to solve (8.72) several times for various regularization parameters, is described below. In this
approach the standard-form problem (8.72) is treated as a least-squares problem of the form

∥∥∥∥∥
[

K̄kα√
αIn

]
4 x̄−

[
yδk
0

]∥∥∥∥∥
2

.

The matrix K̄kα is transformed into an upper bidiagonal matrix J

K̄kα = U

[
J

0

]
VT

by means of orthogonal transformations from the left and from the right with U ∈ Rm×m, J ∈ Rn×n and
V ∈ Rn×n. The orthogonal matrices U and V are represented by series of orthogonal transformations, which
are usually stored in appropriate arrays and later used when matrix-vector multiplications, e.g. UTx and Vx,
are needed. Making the changes of variables

ξ = VT 4 x̄

and

zδ = UTyδk, zδ =

[
zδ1

zδ2

]
, zδ1 ∈ Rn,

we are led to an equivalent minimization problem involving the objective function∥∥∥∥∥
[

J
√
αIn

]
ξ −

[
zδ1

0

]∥∥∥∥∥
2

.

The above minimization problem can be solved very efficiently by means of O (n) operations. Essentially, for
each value of the regularization parameter we compute the QR factorization[

J
√
αIn

]
= Qα

[
Tα

0

]
(8.73)
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by means of 2n − 1 Givens rotations, where Tα ∈ Rn×n is an upper bidiagonal matrix and Qα ∈ R2n×2n is a
product of Givens rotations. Further, defining the vector

ζδα = QT
α

[
zδ1

0

]

and partitioning ζδα as

ζδα =

[
ζδα1

ζδα2

]
, ζδα1 ∈ Rn,

we obtain
ξδα = T−1

α ζδα1

and finally,
4x̄δk+1α = Vξδα.

The standard-form problem (8.72) can be formulated as the normal equation

K̄T
f K̄f4x̄ = K̄T

f f̄ (8.74)

with

f̄ =

[
yδk
0

]
, K̄f =

[
K̄kα√
αIn

]
and iterative methods, as for instance the CGNE and the LSQR algorithms, can be used for computing the
new iterate. For large-scale problems the computational efficiency can be increased by using an appropriate
pre-conditioner. Note that for the normal equation (8.74) the pre-conditioner M should be chosen such that
the condition number of MT K̄T

f K̄fM is small. A pre-conditioner constructed by using the close connection
between the Lanczos algorithm and the conjugate gradient method is usually used. If K̄kα = UΣVT is a
singular value decomposition of the Jacobian matrix, then there holds

K̄T
f K̄f = V

[
diag

(
σ2
i + α

)
n×n

]
VT

and for a fixed index r the preconditioned matrix can be constructed as

M = V

 diag

(
1√
σ2
i +α

)
r×r

0r×(n−r)

0(n−r)×r diag
(

1√
α

)
(n−r)×(n−r)

VT .

We then obtain

MT K̄T
f K̄fM = V

 diag (1)r×r 0r×(n−r)

0(n−r)×r diag
(
σ2
i +α
α

)
(n−r)×(n−r)

VT

and the condition number of MTKT
f KfM is 1 + σ2

r+1/α. If σ2
r+1 is not much larger than α, then the condition

number is small and very few iterations are required to compute the new iterate. Turning now to practical
implementation issues we mention that iterative algorithms are coded without explicit reference to M; only the
matrix–vector product Mx is involved. Since

Mx =
1√
α

x +

r∑
i=1

(
1√

σ2
i + α

− 1√
α

)(
vTi x

)
vi

we observe that the calculation of Mx requires the knowledge of the first r singular values and vectors of K̄kα

and these quantities can be efficiently computed by the Lanczos algorithm . The steps of computing the r
singular values and the right singular vectors of a m× n matrix A can be summarized as follows:

1. apply r steps of the Lanczos bi-diagonalization algorithm with Householder orthogonalization to produce
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a lower (r + 1) × r bidiagonal matrix B, a n × r matrix V̄ containing the right singular vectors and a
m× (r + 1) matrix Ū containing the left singular vectors

AV̄ = ŪB;

2. compute the QR factorization of the bidiagonal matrix B

B = Q

[
R

0

]
,

where Q is a (r + 1)× (r + 1) unitary matrix and R is an upper r × r bidiagonal matrix;

3. compute the singular value decomposition of the bidiagonal matrix R

R = URΣVT
R ;

4. the first r singular values are the diagonal entries of Σ, while the corresponding right singular vectors are
the columns of the n× r matrix

V = V̄VR.

The standard-form problem (8.72) can be also expressed as

A4 x̄ = b (8.75)

with
A = K̄T

kαK̄kα + αIn

and
b = K̄T

kαyδk.

The symmetric system of equations (8.75) can now be solved by using standard iterative solvers, as for in-
stance the Conjugate Gradient Squared (CGS) or the Bi-conjugate Gradient Stabilized (Bi-CGSTAB). A rele-
vant practical aspect is that for iterative methods the matrix A is never formed explicitly as only matrix-vector
products with A and eventually with AT are required. The calculation of the matrix-vector product Ax de-
mands the calculation of K̄T

kαK̄kαx and K̄T
kαK̄kαx should be computed as K̄T

kα

(
K̄kαx

)
and not by forming the

cross-product matrix K̄T
kαK̄kα. The reasons for avoiding explicit formation of the cross-product matrix is the

loss of information due to round-off and the excessively large computational time. A right pre-conditioner for
the system (8.75), i.e.

AMa 4 x̄′ = b, Ma 4 x̄′ = 4x̄

can also be constructed by using the Lanczos algorithm. The right pre-conditioner is given by

Ma = V

 diag
(

1
σ2
i +α

)
r×r

0r×(n−r)

0(n−r)×r diag
(

1
α

)
(n−r)×(n−r)

VT ,

in which case the condition number of AMa is 1 + σ2
r+1/α and

Max =
1

α
x +

r∑
i=1

(
1

σ2
i + α

− 1

α

)(
vTi x

)
vi.

8.3.1.4. Error characterisation

An important part of a retrieval is to assess the accuracy of the regularized solution by performing an error
analysis. The most commonly used methods to calculate the errors in the non-linear case are based on a
linearisation of the forward model and of the gradient of the Tikhonov function.
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Linearisation of the forward model function

The Gauss–Newton iterate xδk+1α is the regularized solution of the linear problem (8.70) and its expression is
given by (8.68). For the exact data vector y the Gauss–Newton iterate possesses a similar representation

xk+1α − xa = K†kαyk,

where, in order to avoid an abundance of notations, yk is now given by

yk = y − F (xkα) + K (xkα) (xkα − xa) .

As in the linear case we consider the decomposition

x† − xδk+1α =
(
x† − xk+1α

)
+
(
xk+1α − xδk+1α

)
(8.76)

and try to estimate each term in the right-hand side of (8.76). Using the linearisation about xkα and xδkα

y = F (xkα) + K (xkα)
(
x† − xkα

)
+ R

(
x†,xkα

)
and

y = F
(
xδkα

)
+ Kkα

(
x† − xδkα

)
+ R

(
x†,xδkα

)
,

respectively, and assuming that Kkα ≈ K (xkα), we express the first term in (8.76) as

x† − xk+1α =
(
x† − xa

)
−K†kαyk = (In −Akα)

(
x† − xa

)
−K†kαR

(
x†,xkα

)
and the second term as

xk+1α − xδk+1α = K†kα
(
yk − yδk

)
= −K†kαδ −K†kα

[
R
(
x†,xδkα

)
−R

(
x†,xkα

)]
with

Akα = K†kαKkα

being the averaging kernel. Inserting the above relations into (8.76) we find that

x† − xδk+1α = (In −Akα)
(
x† − xa

)
−K†kαδ −K†kαR

(
x†,xδkα

)
. (8.77)

Assuming that the sequence
{
xδkα

}
converges and denoting by xδα the limit of this sequence, we let k →∞ in

(8.77) and obtain
eδα = esα + eδnα + eδlα, (8.78)

where
eδα = x† − xδα

is the error vector at the solution,
esα = (In −Aα)

(
x† − xa

)
is the smoothing error vector,

eδnα = −K†αδ

is the noise error vector and
eδlα = −K†αR

(
x†,xδα

)
is the non-linearity error vector. Note that the generalized inverse K†α and the averaging kernel Aα, which
enter in the expressions of the error components, are evaluated at xδα.

The expression of the total error can also be derived by using the fact that xδα is a minimizer of the Tikhonov
function. The stationary condition for F at xδα

g
(
xδα
)

= ∇F
(
xδα
)

= 0

SGP OL1b-2 ATBD Version 6 Page 105 of 145



Docnr.: ENV-ATB-QWG-SCIA-0085
Issue : 2B
Date : 13th May 2015

implies that xδα satisfies the Euler equation

KT
α

[
F
(
xδα
)
− yδ

]
+ αLTL

(
xδα − xa

)
= 0; (8.79)

whence considering the linearisation of F about xδα

y = F
(
xδα
)

+ Kα

(
x† − xδα

)
+ R

(
x†,xδα

)
, (8.80)

we find that (
KT
αKα + αLTL

) (
x† − xδα

)
= αLTL

(
x† − xa

)
−KT

αδ −KT
αR

(
x†,xδα

)
.

Further, using the identity(
KTK + αLTL

)−1
αLTL = In −

(
KTK + αLTL

)−1
KTK,

we obtain
x† − xδα = (In −Aα)

(
x† − xa

)
−K†αδ −K†αR

(
x†,xδα

)
, (8.81)

which is the explicit form of (8.78). Thus, the error representations in the non-linear and the linear case are
similar, excepting an additional term, which represents the non-linearity error. If the minimizer xδα is sufficiently
close to the exact solution x†, the non-linearity error can be neglected and the agreement is perfect.

In a semi–stochastic framework we suppose that Kα is deterministic and, as a result, the error vector eδα is
stochastic with mean esα and covariance Cen = σ2K†αK†Tα . As in the linear case, we may define the mean
square error matrix

Sα = esαeTsα + Cen

= (In −Aα)
(
x† − xa

) (
x† − xa

)T
(In −Aα)

T
+ σ2K†αK†Tα (8.82)

to quantify the dispersion of the regularized solution xδα about the true solution x†. The one-rank matrix(
x† − xa

) (
x† − xa

)T can be approximated by

(
x† − xa

) (
x† − xa

)T ≈ (xδα − xa

) (
xδα − xa

)T
(8.83)

or by

(
x† − xa

) (
x† − xa

)T ≈ σ2

α

(
LTL

)−1
. (8.84)

The approximation (8.83) yields the so called semi-stochastic representation of Sα, while the approximation
(8.84) yields the stochastic representation of Sα, since in this case Sα coincides with the a posteriori covariance
matrix in a statistical inversion.

Accounting on all assumptions made, we deduce that a linearised error analysis can be performed when

1. the sequence of iterates
{
xδkα

}
converges;

2. the forward model can be linearised about xδα in the sense that the non-linearity residual R
(
x†,xδα

)
is

small;

3. the data error model is correct.

If one of these assumptions is violated the error analysis is erroneous. The convergence of iterates can be
guaranteed by using an appropriate termination criterion, but the second and third assumptions require more
attention.

The linearity assumption can be verified at the boundary of a confidence region for the solution. For this
purpose we consider a singular value decomposition of the means square error matrix Sα = VΣVT and
define the normalized error patterns sk for Sα from the decomposition VΣ1/2 = [s1, ..., sn]. The linearisation
error

R (x) = F (x)− F
(
xδα
)

+ Kα

(
x− xδα

)
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can be estimated by comparing

εlink =
1

mσ2

∥∥R (xδα ± sk
)∥∥2 ≈ 1

for all k = 1, ..., n.

The validity of the data error model assumption is perhaps the most important problem of an error analysis.
If the data error δy contains only the noise error component δ and if δ is a Gaussian random vector with zero
mean and covariance matrix Cδ = σ2Im, then the square residual norm

∥∥rδα∥∥2 is Chi-squared distributed with

variance σ2 and trace
(
Im − Âα

)
degrees of freedom. In the limit α→ 0

∥∥rδα∥∥2 is Chi-squared distributed with

variance σ2 and m− n degrees of freedom and it must holds∥∥rδα∥∥2
=
∥∥F (xδα)− yδ

∥∥2 ≈ (m− n)σ2, α→ 0.

If the contribution of the systematic error δsys in the data error δy is significant, we have instead

∥∥F (xδα)− yδ
∥∥2 ≈ (m− n)

(
1

m

∥∥δsys∥∥2
+ σ2

)
, α→ 0.

The presence of the systematic errors introduce an additional bias in the solution and to handle with this type
of errors we may proceed as in the linear case, that is, we may replace the data error δy by an equivalent white
noise δe such that

E
{
‖δe‖2

}
= E

{∥∥δy∥∥2
}
.

The variance of the white noise δe is then given by

σ2
e =

1

m

∥∥δsys∥∥2
+ σ2

and the estimate
σ2
e ≈

1

m− n
∥∥F (xδα)− yδ

∥∥2
, α→ 0

can be used to perform an error analysis with the equivalent white noise covariance matrix Cδe = σ2
eIm. It is

apparent that by this equivalence we increase the noise variance and eliminate the bias due to the systematic
errors.

Linearisation of the gradient of the Tikhonov function

The error representation (8.81) has been derived by assuming a linearisation of the forward model about the
minimizer of the Tikhonov function. This derivation does not make use of the Gauss approximation of the
Hessian, since the Euler equation (8.79) holds true for the Gauss-Newton method as well as for the Newton
method. An alternative error representation can be derived for a general Hessian matrix by using the lineari-
sation of the gradient of the objective function. Because the objective function depends on the data yδ we will
indicate this dependence by writing F

(
x,yδ

)
in place of F (x).

Setting x† = xδα−4xδα and using the representation y = yδ−δ we expand the gradient at
(
x†,y

)
in a first-order

Taylor series about
(
xδα,y

δ
)

∂F
∂x

(
x†,y

)
=

∂F
∂x

(
xδα −4xδα,y

δ − δ
)

=
∂F
∂x

(
xδα,y

δ
)
− ∂2F
∂x2

(
xδα,y

δ
)
4xδα

− ∂2F
∂x∂yδ

(
xδα,y

δ
)
δ + R

(
x†,xδα

)
.

At the minimum we have
∂F
∂x

(
xδα,y

δ
)

= 0, (8.85)
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whence taking into account that

∂F
∂x

(
x†,y

)
= g

(
x†,y

)
= αLTL

(
x† − xa

)
and that

∂2F
∂x2

(
xδα,y

δ
)

= G
(
xδα
)
,

∂2F
∂x∂yδ

(
xδα,y

δ
)

= −KT
(
xδα
)
,

we obtain
x† − xδα = αG−1

α LTL
(
x† − xa

)
−G−1

α KT
αδ −G−1

α R
(
x†,xδα

)
(8.86)

with Gα = G
(
xδα
)
. Thus, neglecting the non-linearity error, the smoothing and the noise errors take the forms

esα = αG−1
α LTL

(
x† − xa

)
and

eδnα = −G−1
α KT

αδ,

respectively. The representations (8.81) and (8.86) coincide only for a Gauss approximation of the Hessian and
the difference between them stems from the different linearisation employed. The mean and the covariance
matrix of the error vector eδα are given by the smoothing error vector esα and the retrieval noise covariance
matrix

Cen = σ2G−1
α KT

αKαG−1
α .

When the quasi–Newton method is used to compute the minimizer of Tikhonov function, the Hessian approxi-
mation can be used for error estimation. However, for the Gauss–Newton method, an additional computational
step involving the calculation of the Hessian at the solution has to be performed. For this purpose we consider
the Taylor expansion about the minimizer xδα

F (x) ≈ F
(
xδα
)

+
1

2

(
x− xδα

)T
Gα

(
x− xδα

)
, (8.87)

where by definition the entries of the Hessian are given by

[Gα]ij =
∂2F
∂xi∂xj

(
xδα
)

(8.88)

with xi = [x]i. Equations (8.87) and (8.88) suggest that we may use finite differences for approximating Gα.
Setting for convenience x = xδα and denoting by ∆xi the displacement in the ith component of x, we may
compute the diagonal elements by using (8.87)

[Gα]ii = 2
F (xi + ∆xi)−F (xi)

(∆xi)
2 (8.89)

and the off-diagonal elements from (8.88) with central differences

[Gα]ij = [F (xi + ∆xi, xj + ∆xj)−F (xi −∆xi, xj + ∆xj)

−F (xi + ∆xi, xj −∆xj) + F (xi −∆xi, xj −∆xj)] / (4∆xi∆xj) . (8.90)

The calculation of the Hessian by using finite differences requires an adequate choice of the step sizes ∆xi.
The difficulty associated with the selection of the step size stems from the fact that the objective function
may varies slowly in some directions of the x-space and rapidly in other. The implemented iterative algorithm
significantly improves the reliability of the Hessian matrix calculation and is based on the following result: if Gα

is the exact Hessian and Gα = VΣVT with Σ =
[
diag

(
σ2
i

)
n×n

]
is a singular value decomposition of Gα, then

the linear transformation
x = VΣ−1/2z (8.91)
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implies that in the z-space the surfaces of constant F are spheres, i.e.

F (z)−F (z0) =
1

2
(z− z0)

T
(z− z0) . (8.92)

The computation of the pseudo-Hessian by finite differences is performed in the z-space by using (8.89) and
(8.90) and this process is more stable than a Hessian calculation in the x-space. The step sizes ∆zi are chosen
such that, when computing the diagonal elements, the variations F (zi + ∆zi)−F (zi) are approximately one.

8.3.1.5. Parameter choice methods

The choice of the regularization parameter plays an important role in computing a reliable approximation of
the solution. In this section we present selection criteria with variable and constant regularization parameters.
In the first case the regularization parameter is estimated at each iteration step, while in the second case the
minimization of the Tikhonov function is done a few times with different regularization parameters.

A priori parameter choice methods

The expected error estimation can be formulated as an a priori parameter choice method. The idea is to
perform a random exploration of a domain to which the solution is suppose to lie and for each state vector
realization x†i to compute the optimal regularization parameter for error estimation αopti = arg minα E

{∥∥eδαi∥∥2
}

and the exponent pi = lnαopti/ lnσ. The regularization parameter is then chosen as αe = σp̄, where p̄ =

(1/N)
∑N
i=1 pi is the sample mean exponent and N is the number of events.

The error estimation method can be formulated for non-linear problems by representing the expected error at
the solution as

E
{∥∥eδα∥∥2

}
= ‖esα‖2 + E

{∥∥eδnα∥∥2
}

with

esα = (In −Aα)
(
x† − xa

)
=

n∑
i=1

α

γ2
i + α

(
x† − xa

)T
w−1
i wi (8.93)

and

E
{∥∥eδnα∥∥2

}
= σ2trace

(
K†αK†Tα

)
= σ2

n∑
i=1

(
γ2
i

γ2
i + α

1

σi

)2

‖wi‖2 . (8.94)

In (8.93) and (8.94) γi are the generalized singular values of the matrix pair (Kα,L) , wi is the ith column
of the non-singular matrix W and w−1

i is the ith line of the inverse matrix W−1. Because the Jacobian ma-
trix Kα is evaluated at the solution, a non-linear minimization method has to be employed for computing
αopt = arg minα E

{∥∥eδα∥∥2
}

for each state vector realization. The resulting algorithm is extremely computa-
tional expensive and in order to alleviate this drawback we approximate the Jacobian matrix at the solution by
the Jacobian matrix at the a priori state. This is a realistic assumption because many ill-posed problems arising
in atmospheric remote sensing are nearly linear (with an appropriate choice of the forward model their degree
of non-linearity is of moderate size). The a priori parameter choice method is then equivalent to the expected
error estimation method applied to a linearisation of the forward model about the a priori state.

Another version of the expected error estimation method can be designed by assuming a semi-stochastic
error representation and by using an iterative process for minimizing the expected error. Two relevant features
reduce the performances of the so called iterated expected error estimation method:

1. The semi-stochastic error representation is valid if the Tikhonov solution is an acceptable approximation
of the exact solution, that is, if the regularization parameter is in the neighbourhood of the optimal value
of the regularization parameter.

2. The minimizer of the expected error is in general larger than the optimal value of the regularization
parameter.
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Selection criteria with variable regularization parameters

Since the solution of a non-linear ill-posed problem by means of Tikhonov regularization is equivalent to the
solution of a sequence of ill-posed linearisation of the forward model about the current iterate, parameter choice
methods for the linear problem (8.70) can be used to compute the regularization parameter at each iteration
step.

The noise in the right–hand side of the linearised equation (8.70) is due to the measurement noise in the data
and the linearisation error. At the iteration step k the noise level can be estimated by the minimum value of the
linearised residual corresponding to the smallest singular value

∥∥rδlkmin∥∥. In the framework of the discrepancy
principle the regularization parameter is then selected as the solution of the equation∥∥rδlkα∥∥2

= τ
∥∥rδlkmin∥∥2

with τ > 1.

Due to the difficulties associated with the noise level estimation, error-free parameter choice methods (based
only on information about the noisy data) are more attractive. For the linearised equation (8.70), the following
parameter choice methods can be considered:

1. the generalized cross-validation
αgcvk = arg min

α
υδkα

with

υδkα =

∥∥∥rδl,kα∥∥∥2

[
trace

(
Im − Âkα

)]2 , (8.95)

2. the maximum likelihood estimation
αmlek = arg min

α
λδkα

with

λδkα =
yδTk

(
Im − Âkα

)
yδk

m

√
det
(
Im − Âkα

) , (8.96)

3. the L-curve method
αlck = arg max

α
κδlckα

with
κδlckα =

x′′k (α) y′k (α)− x′k (α) y′′k (α)[
(x′k (α))

2
+ (y′k (α))

2
]3/2

and
xk (α) = log

(∥∥rδlkα∥∥2
)
, yk (α) = log

(∥∥cδkα∥∥2
)
.

In the above relations the linearised residual and the constrained vector are given by

rδlkα = yδk −Kkα

(
xδk+1α − xa

)
=
(
Im − Âkα

)
yδk

and
cδkα = L

(
xδk+1α − xa

)
respectively.

In practice the following recommendations for choosing the regularization parameter has to be taken into
account:

1. at the beginning of the iterations large α-values should be used to avoid local minima and to get well-
conditioned least squares problems to solve;
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2. during the iterations the regularization parameter should be decreased slowly to achieve a stable solution.

Numerical experiments have shown that a brutal use of the regularization parameter αoptk computed by one
of the above parameter selection criteria may lead to an oscillation sequence of α-values. A heuristic formula
that deals with this problem can be formulated as follows: the regularization parameter is the weighted sum
between the previous α-value and the proposed regularization parameter αoptk

αk =

{
ξαk−1 + (1− ξ)αoptk,

αk−1,

αoptk < αk−1

αoptk ≥ αk−1

.

This selection rule guarantees a descending sequence of regularization parameters and the resulting method
is very similar to the iteratively regularized Gauss-Newton method.

Selection criteria with constant regularization parameters

The numerical realization of these parameter choice methods requires to solve the non-linear minimization
problem several times for different regularization parameters. Each minimization is solved with a regulariza-
tion parameter α and a solution xδα is obtained. If the solution is satisfactory as judged by these selection
criteria, then the inverse problem is considered to have been solved. The discrete values of the regularization
parameters are chosen as αi = σpi with pi > 0.

In the framework of the discrepancy principle the regularization parameter is the solution of the equation∥∥yδ − F
(
xδα
)∥∥2

= τ∆2 (8.97)

with τ > 1. Because of non-linear problems, the discrepancy principle equation has only a solution under very
strong restrictive assumptions, we use a simplified version of this selection criterion: if the sequence {αi} is in
descending order, we choose the largest regularization parameter αi? for which the residual norm is below the
noise level, that is, ∥∥yδ − F

(
xδαi?

)∥∥2 ≤ τ∆2 <
∥∥yδ − F

(
xδαi

)∥∥2
, 0 ≤ i < i?.

The generalized discrepancy principle can also be formulated as an a posteriori parameter choice method for
the non-linear Tikhonov regularization. A heuristics justification of this parameter choice method can be given
in a deterministic setting by using the error norm estimate∥∥eδα∥∥2 ≤ 2

(
‖esα‖2 +

∥∥eδnα∥∥2
)

together with the noise error bound ∥∥eδnα∥∥2
<

2τ∆2

α
, τ > 1.

To estimate the smoothing error we assume L = In and consider the unperturbed solution xα corresponding
to the exact data y. The stationary condition for the Tikhonov function at xα yields

KT
α [F (xα)− y] + αIn (xα − xa) = 0 (8.98)

with Kα = K (xα). We then obtain

x† − xα = (In −Aα)
(
x† − xa

)
−K†αR

(
x†,xα

)
and further

esα = (In −Aα)
(
x† − xa

)
.

Taking into account that for any x there holds

‖(In −Aα) x‖2 =

n∑
i=1

(
α

σ2
i + α

)2 (
vTi x

)2 ≤ n∑
i=1

(
vTi x

)2
= ‖x‖2 ,

we deduce that an upper bound for the error norm is given by
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M (α) = 4

(
1

2

∥∥x† − xα
∥∥2

+ τ
∆2

α

)
.

To derive the necessary condition for a minimum of the estimate M (α) we consider the function

f (α) =
1

2

∥∥x† − xα
∥∥2

(8.99)

and find that
df
dα

(α) = −
(
x† − xα

)T dxα
dα

. (8.100)

Formal differentiation of the Euler equation (8.98) with respect to α yields

dKT
α

dα
[F (xα)− y] + KT

αKα
dxα
dα

+ α
dxα
dα

= − (xα − xa) (8.101)

and the neglect of the first term in (8.101) gives

dxα
dα
≈ −

(
KT
αKα + αIn

)−1
(xα − xa) =

1

α
K†α [F (xα)− y] .

The linearisation
y ≈ F (xα) + Kα

(
x† − xα

)
and the matrix identity (

KT
αKα + αIn

)−1
KT
α = KT

α

(
KαKT

α + αIm
)−1

then yield

df
dα

(α) ≈ 1

α

(
x† − xα

)T
K†α [y − F (xα)]

=
1

α

[
Kα

(
x† − xα

)]T (
KαKT

α + αIm
)−1

[y − F (xα)]

≈ 1

α
[y − F (xα)]

T (
KαKT

α + αIm
)−1

[y − F (xα)] .

If we now replace xα by xδα and y by yδ we obtain the generalized discrepancy principle equation in the form

α
[
yδ − F

(
xδα
)]T (

KαKT
α + αIm

)−1 [
yδ − F

(
xδα
)]

= τ∆2.

Error-free methods with fixed regularization parameter are natural extensions of the corresponding criteria for
linear problems and the most popular are the generalized cross validation, the maximum likelihood estimation
and the non-linear L-curve method.

To formulate the generalized cross validation and the maximum likelihood estimation we employ some heuristic
arguments. At the iteration step k the generalized cross validation function υδkα and the maximum likelihood
function λδkα, as given by (8.95) and (8.96), respectively, depend on the influence matrix Âkα, the linearised
residual

rδlkα = yδk −Kkα

(
xδk+1α − xa

)
,

and the noisy data vector
yδk = yδ − F

(
xδkα

)
+ Kkα

(
xδkα − xa

)
.

Assuming that the iterates xδkα converge to xδα, then Âkα converges to the influence matrix at the solution
Âα = KαK†α, rδlkα to the non-linear residual

rδα = yδ − F
(
xδα
)

and yδk to
yδα = yδ − F

(
xδα
)

+ Kα

(
xδα − xa

)
.
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Thus, in the limit k →∞ the generalized cross validation function takes the form

υδα =

∥∥yδ − F
(
xδα
)∥∥2[

trace
(
Im − Âα

)]2
and the maximum likelihood function read as

λα =
yδTα

(
Im − Âα

)
yδα

m

√
det
(
Im − Âα

) =

∑m
i=1

(
uTi yδα

)2
/
(
γ2
i + α

)
m
√∏m

i=1 1/ (γ2
i + α)

,

where (γi; wi,ui,vi) is a generalized singular system of the matrix pair (Kα,L).

The non-linear L-curve is the plot of the constraint norm
∥∥cδα∥∥2

=
∥∥L (xδα − xa

)∥∥2 against the residual norm∥∥rδα∥∥2
=
∥∥yδ − F

(
xδα
)∥∥2 for a range of values of regularization parameter α. This curve is monotonically

decreasing and convex. In a computational sense the non-linear L-curve consists of a number of discrete
points corresponding to the different values of the regularization parameter and, in practice, the following
techniques can be used for choosing the regularization parameter:

1. As for linear iterative regularization methods, we fit a cubic spline curve to the discrete points of the
L-curve (x (αi) , y (αi)) with x (α) = 2 log

∥∥rδα∥∥ and y (α) = 2 log
∥∥cδα∥∥, and determine the point on the

original discrete curve that is closest to the spline curve’s corner.

2. In the framework of the minimum distance function approach we compute

αlc = arg min
i
d2 (αi)

with
d2 (α) = [x (α)− x0]

2
+ [y (α)− y0]

2
,

x0 = mini x (αi) and y0 = mini y (αi).

3. Relying on the definition of the corner of the L-curve as given by Reginska, we determine the regulariza-
tion parameter as

αlc = arg min
i
{x (αi) + y (αi)} ,

that is, we detect the minimum of the logarithmic L-curve rotated by π/4 radians.

8.4. Accessing Profile Values

The Level 2 Limb MDS format was originally defined for volume mixing ratios (VMR) retrievals. In 2006 the limb
retrieval was completely overhauled and a new retrieval method was implemented for the operational retrieval.
The new algorithm retrieves number densities instead of volume mixing ratios. Since format changes require a
large effort and impact the whole ground segment, it was decided to use the dynamic “Additional Diagnostic”
entries of the limb MDS (see also section A.3). A detailed description can be found in Doicu (2005).

The last entry “ADDDIAG” contains the following parameters (just listed after each other):
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Description Size Last Position

Degree of freedom of retrieval 1 1

Information content 1 2

Diagonal elements of averaging ker-
nel in vertical columns (partial columns)

nstvec nstvec + 2

Number density per layer of each main gas n1 · nmain n1 · nmain+nstvec + 2

Initial number density per layer of each main gas n1 · nmain 2 · n1 · nmain+nstvec + 2

Conversion factors to VMR per layer nmain nmain + 2 · n1 · nmain+nstvec + 2

Conversion factors to number density per layer nmain 2 · nmain + 2 · n1 · nmain+nstvec + 2

Averaging kernel for each main gas n1 · nmain · nmain n1 · nmain · nmain + 2 · nmain + 2 · n1 ·
nmain+nstvec + 2

Table 8.2.: Additional diagnostics individual elements.

The following definitions are used for the Limb MDS

â Number of elements of the retrieval grid: nmain (= number of profile entries and number of layers)

â State vector: x

â Element index per layer: k = 1 . . . nmain

â State vector elements assigned to partial columns per layer: xk, k = 1 . . . nmain (vertical columns per
layer = partial columns per layer)

â Retrieval grid:

◦ Ordering: top to down

◦ Top of atmosphere is fixed to 100 km and used for the height grid

◦ Information at TOA is used for height and pressure grid

◦ Height at the lower boundary of each layer k : zk

◦ Pressure at the lower boundary of each layer k : pk

◦ Altitude grid element: ∆zk = zk−1 − zk with z0 = 100 km

◦ Pressure grid element: ∆pk = pk−1 − pk
◦ Pressure is read from climatology with p0 at top of atmosphere

â Number density per layer: n with nk, k = 1 . . . nmain

â Volume mixing ratio per layer: vmr with vmrk , k = 1 . . . nmain

Since it is very often desirable to represent the retrieved profile in number density or volume mixing ratio, the re-
lations with respect to the chosen state vector representation (partial columns per layer) are given in the fol-
lowing. Note that the conversion is related to quantities which describe the result for a given profile layer. Addi-
tionally, note that the information provided for pressure and height is implicitly extended by the entries at TOA
which are not given in the product.

The number density at layer k can be derived from the state vector by

nk = sndk xk =
cndk
∆zk

xk

Here, sndk is a scaling factor which can be expressed by the difference of the altitudes at the bound-
aries of the layer k
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∆zk = zk−1 − zk

and the constant cndk . In analogy, the VMR at layer k is given by

vmrk = svmrk xk =
cvmrk

∆pk
xk

There, the scaling factor svmrk is expressed as the difference of the pressures at the boundaries of layer k

∆pk = pk−1 − pk

and the constant cvmrk .

The conversion between the state vector representation in partial columns and number density (resp. VMR) can
also be written in matrix representation. Then we have

n = Snd · x, and vmr=Svmt · x

with Snd and Svmr being diagonal matrices, i.e. Sndij = sndi · δij and Svmrij = svmri · δij
The conversion can also be applied to the representation of the covariance matrix, the correlation ma-
trix, the relative error and finally the averaging kernel.

Covariance Matrix The covariance matrix C(x) for the given state vector is written by

C(x) = E[xxT ]

where E is the expected value operator. The covariance matrix can be then converted into number density rep-
resentation by

Cnd = SndC(x)Snd

into VMR representation by

Cvmr = SvmrC(x)Svmr

Explicitly, the entries of Cnd and Cvmr can be expressed to

Cndij = sndi Cij(x)sndj

and

Cvmrij = svmri Cij(x)svmrj

respectively.
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Relative Error The relative error εi at the solution is defined by

εi =

√
Cii(x)

xi
· 100 =

√
Cndii
ni

· 100 =

√
Cvmrii

vmri
· 100

Correlation Matrix The off-diagonal elements of the correlation matrix of the fit are given by

ρij =
Cij(x)√

Cii(x) ·
√
Cjj(x)

=
Cndij√

Cndii ·
√
Cndjj

=
Cvmrij√

Cvmrii ·
√
Cvmrjj

where i, j = 1 . . . nmain and i 6= j

Averaging Kernel If x̂ represents the “true” profile in partial columns per layer, then the averaging ker-
nel is defined by

Aij(x) =
∂x̂i
∂xj

The averaging kernels for the number density and VMR are then given by

Andij =
∂n̂i
∂nj

=
sndi
sndj
Aij(x) =

sndi
sndj

∂x̂i
∂xj

and

Avmrij =
∂ ˆvmri
∂vmrj

=
svmri

svmrj

Aij(x) =
svmri

svmrj

∂x̂i
∂xj

respectively.

8.5. Common Characteristics of the Profile retrieval

For all profile retrievals the results of the Limb cloud detection are taken into account. In order to avoid cloud
contamination, the first measurement data used for the profile retrieval is taken at the first cloud free height
above the configured minimum height, i.e.

h0 =

{
hmin for max(hcloud) < hmin

hi+1 for max(hcloud) > hmin with i = Index of max(hcloud)
(8.102)

Retrievals below 20 km and above the reference height are expected to have larger errors.
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8.6. Limb Ozone Profile Retrieval Settings

Input spectra
Calibration All calibrations applied
Retrieval Height Range 13.5 km (or lowest cloud free height) - 65 km
Reference Height 46 km (for 520 - 590 nm); 65 km (for 283 - 310 nm)
Fit Settings
Fitting Interval 283 - 310 nm and 520 - 590 nm
Polynomial Degree 4th order
Number of Layers 33
Aerosol Model LOWTRAN
Absorption Cross Sections/Fitted Curves
O3 Bogumil et al. (2003)@243 K
NO2 Bogumil et al. (2003)@243 K
Profiles
O3 McLinden et al. (2002)
NO2 McLinden et al. (2002)

8.7. Limb NO2 Profile Retrieval Settings

Input spectra
Calibration All calibrations applied
Retrieval Height Range 13.5 km (or lowest cloud free height) - 46 km
Reference Height 43 km
Fit Settings
Fitting Interval 420 - 470 nm
Polynomial Degree 3rd order
Number of Layers 33
Absorption Cross Sections/Fitted Curves
O3 Bogumil et al. (2003)@243 K
NO2 Bogumil et al. (2003)@243 K
Profiles
O3 McLinden et al. (2002)
NO2 McLinden et al. (2002)
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8.8. Limb BrO Profile Retrieval Settings

Input spectra
Calibration All calibrations applied
Retrieval Height Range 10.5 km (or lowest cloud free height) - 35 km
Reference Height 35 km
Fit Settings
Fitting Interval 337 - 357 nm
Polynomial Degree 4th order
Number of Layers 33
Absorption Cross Sections/Fitted Curves
O3 Bogumil et al. (2003)@243 K
BrO Bogumil et al. (2003)@243 K
Profiles
O3 McLinden et al. (2002)
BrO McLinden et al. (2002)
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9. Limb Cloud Retrieval

9.1. Background

9.1.1. Motivation

In limb mode SCIAMACHY measures light scattered along the line-of-sight. If the line-of-sight intersects a cloud
at a certain height, the spectrally resolved measurements differ from cloud free measurements. To eliminate
systematic uncertainties and to enhance the sensitivity of the cloud determination, differences and/or ratios of
spectral measurements in a certain wavelength region are used. Here we use radiance ratios at 750 nm and
1090 nm (and of 1550 nm and 1630 nm, see Section 9.3) for the detection of clouds. In an ideal Rayleigh
scattering atmosphere, populated only by molecules, the difference between radiances at two wavelengths
about 300 nm apart is large (I ∼ λ−4), while for larger particles like cloud droplets this difference is reduced
(e.g., I ∼ λ−1, Section 9.1.2). The basic geometry and the principle of the SCIAMACHY cloud top height
detection from limb measurements is shown in Figure 9.1. The satellite instrument detects different light from
the cloud and above, which is then derived as the cloud top height (CTH) above the tangent point.

9.1.2. Theory

In earth’s atmosphere radiation is scattered non-isotropically depending on the wavelength of the incident
radiation, the atmospheric density as well as on the size and shape of the scattering particles. The distribution
of the intensity I of scattered radiation is described by

â Rayleigh scattering: wavelength� particle size (molecules like nitrogen or oxygen) and/or

â Mie scattering: wavelength � particle size (aerosol, cloud particles as can be found in tropospheric
clouds and polar stratospheric clouds (PSCs))

In the Rayleigh scattering case we find I ∼ λ4, whereas in the case of Mie scattering I is proportional to
λ−α, with a value of α varying from 0 to 4. Due to the dependence of the spectral signature on the size of the
scattering particles it is possible to derive information about the physical properties of clouds from comparisons
of radiation at different wavelengths.

Figure 9.1.: Illustration of the principle of the cloud top height detection using scattered solar radiation at clouds
for two wavelengths in the near infra-red (red and brown darts). SCIAMACHY scans the limb in
tangent height steps with a difference ∆TH=3.3 km. The cloud top height CTH is calculated for
the tangent height (the vector being perpendicular to the ground and the line-of-sight).
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9.1.3. Product description

Using this method a detection tropospheric clouds (i.e. stratus, cumulus and cirrus), cirrus clouds at the tropical
tropopause, stratospheric clouds in polar winters and noctilucent clouds near the polar summer mesopause is
straightforward. While for every cloud type the detection is based on the same physical principles, each cloud
type detection requires specific details. For example, detecting PSCs appropriately requires knowledge about
the stratospheric aerosol content to avoid erroneous detection due to high levels of aerosol.

9.2. Algorithm Description

9.2.1. Physical Considerations

As cloud particles (diameter between 2 µm to 1.5 mm) are larger than the wavelength used in the UV-to-IR
measurement range of SCIAMACHY (around 0.8 µm), scattered radiation tends to be scattered not uniformly
in all directions, as is the case for the much smaller background air molecules (~0.1 nm). In general, the phase
function of scattered radiation from water cloud droplets has a strong forward peak. On the other hand cloud
droplets scatter radiation at different wavelengths more uniformly than molecules. Furthermore molecules
absorb radiation in certain wavelength region.

To identify wavelength regions, which are suitable for radiance comparisons to detect clouds, certain require-
ments have to be fulfilled

1. Radiation at wavelengths below 400 nm is not suitable because the atmosphere gets optically thick for
Rayleigh scattering in the upper troposphere at about 15-18 km;

2. Spectral windows with strong molecular absorption like for ozone, oxygen or water vapour are not suitable
because of the height dependence of the absorption profiles.

For the identification (‘flagging’) of cloud contaminated pixels in the SCIAMACHY limb data and the retrieval of
cloud top heights we choose two wavelength pairs of 750 nm and 1090 nm, and of 1550 nm and 1630 nm. The
ratio of 750 nm and 1090 nm is used for the general detection of clouds. Radiance at 750 nm (SCIAMACHY
channel 4) is basically free of absorption signatures, as ozone absorption is comparatively small (see Figure
9.2). It is situated between the H2O absorption band at 725 nm and the O2-A band at 760 nm. The 1090 nm
radiance (SCIAMACHY channel 6) is just outside a H2O absorption band ranging from 1100 nm to 1170 nm.

The wavelength pair of 1550 nm and 1630 nm is chosen for the detection of ice clouds, as the spectral signa-
tures of ice is more pronounced in this wavelength region Kokhanovsky et al. (2005). The imaginary part of
the refractive index is shown in Figure 9.3 taken from Acarreta et al. (2004). The 1550 nm region is outside the
strong water vapour absorption band around 1400 nm.
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Figure 9.2.: Calibrated Limb spectra for the SCIAMACHY channel 4 (top) and channel 6 (bottom) for an exam-
ple measurement (von Savigny et al. (2005)).

Figure 9.3.: Taken from (Acarreta et al. (2004))and updated. The blue lines give wavelengths of SCIAMACHY
channel 6+ suitable for ice cloud detection. The red dots indicate a spectral behaviour of a pure
Rayleigh scattering atmosphere, showing the strong decrease of radiance.

9.2.2. Mathematical Description of the Algorithm

To improve the signal-to-noise ratio SCIAMACHY measurements are integrated over the following wavelength
windows: 750 – 751 nm, 1088 – 1092 nm, 1550 – 1553.2 nm and 1630 – 1634 nm. For the detection of cloudy
pixels the height dependent colour index Rc is created from the ratio of the wavelength dependent intensities
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Rc(TH) =
I(λ1, TH)

I(λ2, TH)
(9.1)

TH denotes the tangent height for the SCIAMACHY line-of-sight, λ the wavelength, and I the intensity. For the
determination of the cloud top, the colour index ratio profile is computed as follows

â Starting with the lowest height, pairs of two adjacent colour indices are divided.

â The maximum of the colour index ratio will then show the cloud top.

The colour index ratio Θ(TH) is defined as

Θ(TH) =
Rc(TH)

Rc(TH + ∆TH)
(9.2)

For SCIAMACHY limb measurements the tangent height difference ∆TH is 3.3 km, which also gives the
vertical resolution. Taking this difference into account, a limb measurement at e.g. 20 km tangent height has a
horizontal resolution along track of about 400 km and due to the scan cycle of 240 km across track.

9.3. Application and Determination of Cloud Types

9.3.1. Tropospheric Clouds

The main reason for flagging cloudy pixels is to support a successful trace gas retrieval. A fully clouded scene
at high altitudes will influence the quality of the retrieved trace gas profiles. For absorbers peaking in the
troposphere like water vapour, cloudy scenes will foil a reliable retrieval. Thus it is mandatory to know if there
is cloud contamination in the line-of-sight and what the cloud top height is.

Figure 9.4.: Colour index profiles of SCIAMACHY Limb radiances (left) and the corresponding colour index
ratio profiles (right).

An example for colour index profiles is shown in Figure 9.4 for a measurement in the tropics at 9.2◦ N and
83.7◦ E on 1 July 2005. The depicted lines in the altitude range from 0 to 30 km show different ratios

â 1090/750 nm (black line),

â 1630/1550 nm (red line).

The ratios 1550/750 nm (blue line) and 1630/750 nm (green line) are shown only for testing purposes. These
ratios are redundant and are not used for the detection of clouds.
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The near infra-red colour ratios may be used for the distinction of water and ice clouds. To have the same
starting value at the bottom, the radiance profiles are divided by the lowermost radiance measured by SCIA-
MACHY. The right part of Figure 9.4 shows the colour index ratios for the same measurement. The cloud top
can be found at the maximum value at a height of about 14.5 km. In Figure 9.5 the colour index ratios (CIR)
along an entire SCIAMACHY orbit are shown. To flag a fully cloudy scene in one CIR profile a value of Θ = 2
is taken (solid circles), while partly cloudy scenes (black rings) are assigned for values between 1.4 and 2.
CIR below the threshold of 1.4 are considered as cloud free (depicted as full circles at 0 km altitude). The
values are empirical and still preliminary. They will be verified using a larger dataset in the frame of an ongoing
verification. In the upper part of the figure the cloud free region in the tropics shows slightly elevated values
at 20 km, which could hint to cirrus clouds. This also is supported by the ice cloud detection as shown in the
lower plot, where clouds are detected at these altitudes. The NIR gradients tend to have outliers at the upper
boundary possibly due to small signal to noise ratios.

Figure 9.5.: Colour index ratios for a SCIAMACHY orbit as a function of latitude and tangent height. The circles
depict the cloud top heights. Full cloud coverage is given by solid circles above the ground, while
partially cloudy scenes are illustrated by the black rings in the upper part of the plot. In the lower
part solid circles depict ice phase clouds.

9.3.2. Polar Stratospheric Clouds (PSCs)

While general tropospheric clouds are easy to detect, more sophisticated detection criteria are needed for
PSCs (see Figure 9.4) to reduce false results. Currently the stratospheric aerosol content is low due to the
absence of volcanic eruptions for longer time periods. The wavelength ratio of 750 nm and 1090 nm is used for
PSC detection. To distinguish between an aerosol loaded stratosphere and an optically thin PSC, a threshold
of the colour index ratio of Θ(TH) > 1.3 was chosen. This value is a result of model studies of von Savigny
et al. (2005). High altitude cirrus clouds can also be confused with PSCs, so as a further constraint, Θ(TH)
should be taken from measurements above the climatological tropopause. A simple constraint is to choose a
tangent height between 15 and 30 km and to look for PSCs only above 50° latitude.
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Figure 9.6.: Colour index profile (a) and colour index ratios (b) in case of a PSC contaminated measurement
(blue) and a background profile (black).

9.3.3. Noctilucent Clouds (NLCs)

Noctilucent clouds (NLCs) are a mesospheric phenomenon (80 and 85 km), occurring at high latitudes during
summertime, when the mesopause region is very cold. A typical season starts about 3–4 weeks before the
summer solstice and persists for approximately 3 months (Robert et al. (2009)). These clouds can frequently
be detected from ground. UV-radiation at 265 nm and 291 nm is used for the detection of clouds at these
heights, because multiple scattering and reflection from the ground can be neglected for the limb scattering
geometry. Two mechanisms have been implemented to establish an NLC detection method.

1) For stronger NLCs differencing is a feasible way for detection:

ΘD(TH) = I(TH)− I(TH +4TH) (9.3)

A negative difference (Eq.9.3 ) at tangent heights between 75 km and 90 km indicates NLCs in the line-of-sight
(see Fig. 9.7).

2) A division of the radiance is used to get the colour ratio for weaker NLCs:

Θ(TH) =
Rc(TH)

Rc(TH + ∆TH)
(9.4)

If both wavelengths give ratios Θ(TH) > 3, NLCs are detected (von Savigny et al. (2004)). This is for weak
NLCs that do not have a peak in radiance at these altitudes, but only a bump.
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Figure 9.7.: Detection of NLC due to the increase in backscattered limb radiance above 80 km (purple) and a
background measurement (red).

9.4. Summary and Implementation

Cloud detection can substantially influence the limb results, if a limb profile is sensitive to cloud contamination
with respect to the spectral measurement. A possible drawback could be that results may be biased towards
an atmosphere that is too dry. This is because clouds need moisture to evolve. This moisture gets transported
in higher altitudes. If cloudy scenes are removed the resulting picture of the atmosphere represents a too dry
environment.

On average the altitude coverage of profiles may change because, due to cloud, indexing profiles from lower
altitudes may be skipped as they are flagged cloud contaminated.

On the other hand, a cloud index may improve results significantly by sorting out cloud contaminated scenes.
A cloud index in principle also inherits the possibility to distinguish between different cloud types.

Currently it has not been investigated what influence the coverage of the field of view (FOV) of SCIAMACHY
has (i.e. partial coverage, horizontal coverage, vertical coverage).

We recommend to carefully choose the wavelength region for setting up the cloud index. The wavelength
regions shown in this ATBD are not the only wavelengths where a detection of clouds is possible but they have
proven to work. A final determination of the quality of the detection with this set up is currently work in progress.
We generally recommend using a cloud index, because sorting out obstacles from the FOV is essential for limb
sounding.

The following table shows the current settings in the processor:
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Name Description Values

CLOUD_TYPE name of cloud type WCL ICL PSC NLC
LO_WLW lower wavelength window
START start wavelength 750 1550 750 264
END end wavelength 751 1553.2 751 266

UP_WLW upper wavelength window
START start wavelength 1088 1630 1088 290
END end wavelength 1092 1634 1092 292

LO_CIR lower CIR boundary 1.4 1.28 1.35 N/A
UP_CIR upper CIR boundary 2.2 N/A N/A N/A
MIN_TH minimum TH 0 0 15 76
MAX_TH maximum TH 25 25 30 86
WARN_TH warning TH 18 18 N/A N/A
MIN_LAT minimum absolute LAT N/A N/A 50 N/A
MAX_SZA maximum SZA 88 88 88 88

Table 9.1.: SCODA settings

9.4.1. Exception Rules

As the SCIAMACHY data is not perfect, especially in channel 6 at wavelengths near 1630 nm , it is necessary
to sort out unexpected, non physical radiances. Thus a few exception rules were implemented to avoid extreme
colour index ratios due to high or negative radiances.

1. As it very unusual to have negative radiances in the three wavelength bands (750 nm, 1090 nm, 1550
nm), the retrieval is stopped, if this shall happen.

2. For the band 1630 nm two tests are made:

a) The wavelengths where negative radiances occur at any tangent height below the maximum height
of 35 km are not used for the calculation of the mean.

b) If unusually high radiances were found within the range, they will also be excluded. This is done by
calculating the mean and the standard deviation of the sum of the radiances at the tangent heights
up to the maximum height.
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10. Tropospheric NO2

10.0.2. Motivation

Tropospheric NO2 is an air pollutant negatively affecting ecosystems and human health. The main anthro-
pogenic sources of NO2 in the troposphere are fossil fuel combustion and biomass burning. There are natural
sources as well. These are microbial production in soils, wildfires and lightning.

10.0.3. Retrieval Settings

Nadir Settings
see Section 5.4.2

Limb Settings
see Section 8.7

Limb-Nadir Matching Settings
Tropopause height ECMWF ERA-Interim re-analysis
Cloud limits radiance cloud fraction < 50% (corresponds to effective CF < 0.2)
Background Ref. Sector 180 – 220◦ (Pacific)
AMF Settings
Stratospheric LIDORT (HALOE NO2 Profiles Climatology)
Tropospheric Look-up table of the box AMFs used in the operational processing of the

GOME-2 data
Tropospheric NO2 profiles from the MOZART CTM

The retrieval of tropospheric NO2 columns from SCIAMACHY measurements is performed in several steps
making use of various SCIAMACHY products (NO2 nadir slant columns, NO2 limb profiles) as well as sev-
eral external data sets needed for the calculation of tropospheric air mass factors. Additional normalization is
necessary using a background data base of values over the Pacific reference sector. As NO2 cross-sections
depend on temperature and in the total column retrieval temperatures in the stratosphere are assumed, a
correction needs to be applied for AMFtropospheric calculation accounting for differing temperature in the tropo-
sphere.

In principle, the retrieval approach is simple. Nadir observations provide columns integrated over the full
atmosphere down to the ground (note that only almost cloudless nadir pixels - CF < 0.2 - are processed). Limb
measurements on the other hand provide a stratospheric profile, which can be integrated to the stratospheric
column. The difference of the two measurements provides the tropospheric column. In practice, the subtraction
of the stratospheric contribution has to be performed on the slant columns in order to account for the different
sensitivity of the nadir measurements in different altitudes. Therefore, the limb profiles are integrated and for
each nadir pixel converted to the stratospheric slant columns using AMFstratospheric accounting for the given
viewing conditions (SZA, LOS, relative azimuth). Since many more nadir measurements than limb profiles are
performed within one state, the limb data need to be interpolated to the position of the nadir pixels. This is
done by first computing all limb columns for a complete orbit, then interpolating them in latitude for each of the
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4 viewing angles separately. This yields four VCstrat values for every nadir state. These values are then linearly
interpolated and extrapolated in viewing angle to the respective nadir position.

A further complication arises from small systematic differences between limb and nadir columns, which need to
be corrected for. This is done by computing the average nadir and limb slant columns over the Pacific reference
sector at all latitudes and correcting the limb data with the difference between the two values.

The overall retrieval for each measurement can be broken down in the following steps:

1. Computation of latitudinal dependent offset between limb and nadir slant columns

2. Computation of stratospheric nadir slant column using offset-corrected limb profiles

3. Computation of tropospheric slant column using nadir slant columns and calculated stratospheric slant
columns

4. Computation of tropospheric vertical column applying AMFtropospheric

5. Addition of a tropospheric background to account for tropospheric NO2 in the Pacific reference sector

The schematic chart visualizing the retrieval steps is depicted in Figure 10.1. L2 input is colored green,
databases blue, intermediate and final results yellow and processing steps red.
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Figure 10.1.: Flow chart of the tropospheric NO2 retrieval algorithm.
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A. Level 2 data structure

In this section the Earth observation MDS entries are described. The text is a copy of the relevant parts of
the Level 2 IODD. Note that not all fields are filled with calculated values, some are place-holders for future
versions of the processor.

A.1. Cloud&Aerosol MDS

This component is of variable record length. The actual length is given in the DSRLEN field (the second field).
Typical values of variable numbers are given in italic and brackets which are used for the calculation of typical
sizes and offsets of the file, components and fields:

â No of Records: 3600

â Record Size: variable (96)

â Component Size: variable (337.5 kB)

The following table gives an overview of the entries of the MDS:

No. Name Comments Unit Type # Size Offset

1 STARTTIME Start time of the clouds and aerosol record - MJD 1 12 0

2 DSRLEN Data set record length (DSR) - ul 1 4 12

3 QUALITY Quality indicator (-1 if DSR is empty) - sc 1 1 16

4 INTTIME Integration Time of DSR 1/16 s us 1 2 17

5 SURFPRESS Surface Pressure hPa fl 1 4 19

6 CLOUDFRAC Cloud Fraction - fl 1 4 23

7 ERRCLDFRAC Error on cloud Fraction rel. fraction fl 1 4 27

8 NUMPMDPIX Number of PMD sub-pixels for this DSR - us 1 2 31

9 FULLFREE Number of PMD sub-pixels determined to be totally cloudy

or totally cloud-free

- us 2 4 33

10 TOPHEIGHT Could-top height km fl 1 4 37

11 ERRTOPHEIGHT Error on could-top height (currently set to -99.99) rel. fraction fl 1 4 41

12 CLDOPTDEPTH Cloud optical depth km fl 1 4 45

13 ERRCLDOPTDEP Error on cloud optical depth (currently set -99.99) rel. fraction fl 1 4 49

14 CLOUDTYPE Cloud type - us 1 2 53

15 CLOUDBRDF Cloud-top bi-directional reflectance - fl 1 4 55

16 ERRCLOUDBRDF Error on cloud-top bi-directional reflectance rel. fraction fl 1 4 59

17 EFFSURFREFL Effective Lambertian surface reflectance - fl 1 4 63

18 ERREFFSREFL Error on Effective Lambertian surface reflectance rel. fraction fl 1 4 67

19 CLOUDFLAG Flag describing the cloud parameter output - us 1 2 71

20 AAI Absorbing aerosol index - fl 1 4 73

21 AAIDIAG Diagnostic of the absorbing aerosol index - fl 1 4 77
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No. Name Comments Unit Type # Size Offset

22 AAIFLAG Flag describing the absorbing aerosol index output - us 1 2 81

23 NUMAEROPARS Number of additional aerosol parameters (na) - us 1 2 83

24 AEROPARS Additional aerosol parameters - fl na (3) (12) (85)

Cloud-top height and error are written per observation and are valid for the shortest integration time.

A.1.1. Additional Explanations

Cloud flagging

The flags describing the cloud type (field 14) have to be interpreted bit-wise. They contain the classification of
clouds according to the WMO scheme (when the bit is set to italic, condition is true; bits are counted from 0 to
15). The following is defined1:

â 15: low or high cloud

â 14: ice or water cloud

â 13: thick or thin cloud

â 12-0: not used

The flags describing the output (field 19 and 22) have to be interpreted bit-wise. They will contain information
reflecting some important settings in the initialisation file (when the bit is set to italic, condition is true; bits are
counted from 0 to 15). For the cloud components the definition is:

â 15: source of cloud fraction PMD - fitting

â 14: source of cloud-top pressure in VCD algorithm - ISCCP

â 13: source of cloud-top height fitting - SACURA: no convergence

â 12: source of cloud-top height fitting - SACURA: number of iterations exceeded, average of neighboured
values taken

â 11: source of cloud-top height fitting - SACURA: cloud layer size set to constraint

â 10: source of cloud-top height fitting - SACURA: cloud-bottom height set to constraint

â 9: source of cloud-top height fitting - SACURA: cloud-top height set to constraint

â 8-0: not used at present

Note that SACURA provides a sophisticated flagging at output which mirrors if a constraint is set for a quantity
during the fitting. This may happen if cloud-bottom height, cloud-top height or cloud layer size exceed pre-
defined constraints. In that case each quantity can be individually set to the constraint value. In case SACURA
exceeds the number of iterations, the arithmetic average of the neighbour values is taken. If cloud-clear
condition is reflected from the PMD algorithm, cloud-top height and cloud optical thickness are set to 0. In
case of SACURA an error of 0.25 km can be expected for full convergence; otherwise 0.5 km.

1The numbering of bits starts with the highest number for the most significant bit of the most significant byte (i.e. big-endian) and ends
with 0 for the least significant bit of the least significant byte. E.g. for a two byte field the bits are labeled from 15 to 0
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Aerosols Entries

The field AAIDIAG is not used at the moment.

For the aerosol flag (field 22) the current definition is:

â 15: no - yes Rayleigh scattering correction successful

â 14: no - yes AAIA computation successfully ended

â 13-0: not used at present

In case AAI values are not computed, but just copied from observations with longer integration times, AAI flags
remain unset.

For the current version the number of additional aerosol parameters (field 23) is 3. Additional aerosol parame-
ters (field 24) are:

1. the residue calculated in the AAIA

2. the retrieved surface albedo at 380 nm

3. the ground height used in the AAIA

The number of records is taken from the number of records of the Nadir geolocation.

A.2. Nadir MDS

This component is of variable record length. The actual length is given in the DSRLEN field (the second field).
Typical values of variable numbers are given in italic and brackets. These values are used for the calculation
of typical sizes and offsets of the file, components and fields.

â No of Records: 36000

â Record Size: variable (157 )

â Component Size: variable (5.39 MB)

The following table gives an overview of the entries of the MDS. The format component above is repeated for
each fitting window. Therefore the number of records is taken from the Nadir geolocation record multiplied by
the number of fitting window applications given in this product (example: 10):

No Name Comments Unit Type # Size Offset

1 STARTTIME Start time of the nadir record - MJD 1 12 0

2 DSRLEN Data set record length (DSR) - ul 1 4 12

3 QUALITY Quality indicator (-1 if DSR is empty) - sc 1 1 16

4 INTTIME Integration Time of DSR 1/16 s us 1 2 17

5 NUMOFVCD Number of vertical column densities (nV ) - us 1 2 19

6 VCD Vertical column density (VCD) of the main parameter molecule/cm2 fl nV (1) (4) (21)

7 ERRVCD Error on the vertical column density rel. fraction fl nV (1) (4) (25)

8 VCDFLAG Flag describing the VCD output - us 1 (2) (29)

9 ESC Effective slant column (ESC) density of the main parameter molecule/cm2 fl 1 (4) (31)

10 ERRESC Error on the effective slant column (ESC) density above rel. fraction fl 1 (4) (35)

11 NUMLINFITP Number of linear fitted parameters (n1) - us 1 (2) (39)

12 NUMNLINFITP Number of non-linear fitted parameters (n2) - us 1 (2) (41)

13 LINPARS Linear fitted parameters - fl n1 (4) (16) (43)
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No Name Comments Unit Type # Size Offset

14 ERRLINPARS Error on the linear fitted parameters rel. fraction fl n1 (4) (16) (59)

15 LINCORRM Cross-correlation matrix entries of the linear fit: m1 = 1/2 *

n1 * (n1 - 1)

- fl m1 (6) (24) (75)

16 NLINPARS Non-linear fitted parameters - fl n2 (2) (8) (99)

17 ERRNLINPARS Error on the non-linear fitted parameters rel. fraction fl n2 (2) (8) (107)

18 NLINCORRM Cross-correlation matrix entries of the non-linear fit (m2 =

1/2 * n2 *(n2 - 1) )

- fl m2 (1) (4) (115)

19 RMS RMS of the fit - fl 1 (4) (119)

20 CHI2 Chi-square of the fit - fl 1 (4) (123)

21 GOODNESS Goodness of the fit - fl 1 (4) (127)

22 NUMITER Number of Iterations for the non-linear fit - us 1 (2) (131)

23 FITFLAG Fitting output flag - us 1 (2) (133)

24 AMFGRD AMF to ground - fl 1 (4) (135)

25 ERRAMFGRD Error on the AMF to ground rel. fraction fl 1 (4) (139)

26 AMFCLD AMF to cloud-top - fl 1 (4) (143)

27 ERRAMFCLD Error on the AMF to cloud-top rel. fraction fl 1 (4) (147)

28 AMFFLAG AMF output flag - us 1 (2) (151)

29 TEMPERATURE Temperature of reference spectrum K fl 1 (4) (153)

A.2.1. Additional explanations

Because of different reasons some MDS fields are left empty (i.e. have values 0) if AMC-DOAS was used.
The AMC-DOAS algorithm allows to obtain a VCD of water vapour directly, omitting an intermediate step of
SCD calculation. That is why fields 9 and 10 (SCD and its error) are empty for NAD_UV8_H2O. Since the
fitting procedure in the AMC-DOAS algorithm is non-linear, the parameters of linear fitting (fields 13-15) are
absent. In the field 24 instead of AMF (to ground) the parameter a (the AMF correction factor) computed by the
AMC-DOAS algorithm (Noël et al., 1999) is listed, and in the field 25 its error. Fields 26 and 27 are left empty
as well, because no AMF to cloud-top is calculated in the AMC-DOAS algorithm. All errors for AMC-DOAS
(fields 7, 17, 25) are absolute values.

VCD entries for H2O and CO

Field 5 allows the output of more than one VCD result per record. This feature is used for NAD_UV8_H2O,
NAD_IR3_CO, and NAD_IR1_CH4, and has the following effect on Fields 6 and 7:

â For H2O fields 6 and 7 consist of two entries. The first entry of field 6 gives the VCD in molecules/cm2,
the second in g/cm2. The latter unit is more convenient in the meteorological community. Field 7 contains
for both entries the absolute error in g/cm2.

â For CH4 fields 6 and 7 consist of two entries. The first entry contains xCH4 = V CDCH4,ref · αCH4

αCO2
, the

second CH4 = V CDCH4,ref · αCH4

â For CO fields 6 and 7 consist of two entries. The first entry contains xCO = V CDCO,ref · αCO

αCH4
, the

second CO = V CDCO,ref · αCO
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VCD flags

Flags describing the output will be interpreted bit-wise (conventions as above) and the following are the current
baseline. Please note: not all bits of the following fields are used and some of them are only relevant for the
indicated application (DOAS or IAS).

Field 8 describes the VCD calculation. Bits 0 to 7 are used for DOAS.

â 15: no - yes extended field-of-view calculation

â 14: no - yes maximum SZA reached, VCD computation impossible

â 13: no - yes no weighting of AMFs over footprint

â 12: no - yes linear weighting of AMFs over footprint

â 11: no - yes parabolic weighting of AMFs over footprint

â 10-0: not used at present

For AMC-DOAS (retrieval of H2O) flag 2 is set ’true’, all others ’false’.

For IAS (i.e. CO retrieval) in principle all 16 bit are used:

â 15: no - yes convergence reached

â 14: no - yes sza lower than limit (currently 80°), note that currently this behaviour is reversed compared
to the above DOAS case

â 13: no - yes residual norm lower than limit (currently 4)

â 12: no - yes maximum absolute value of residual lower than limit (currently 2)

â 11: no - yes error weighting used

â 10: no - yes ratioed measurements used

â 9-nn: α between bounds (currently -1 and 3) and |αerr| < limit, a pair of flags for each gas (limit currently
1)

α is the fitted scaling factor, nn = 2 * number of gases + 5, i.e 11 for CO. The sequence of gases is defined by
the initialization file.

Fitting parameters and results for IAS

Fields 11/12, 13/14 and 16/17 require some special treatment for IAS. Field 11 will contain the number of
linear fit parameters, which is currently 1, and Field 12 will be filled with the total number of fit parameters. This
number is currently 5, composed of the number of linear (1) and non-linear (1) fit parameters plus the number
of gases (3). In principle, the number of linear fit parameters is composed of reflectance and baseline, which
can contribute up to three values each, depending on the polynomial degrees defined by the initialization file.
Note that attribute degree in the initialization file specifies the number of coefficient, not the polynomial degree.
Baseline is not used at present.

Fields 13 and 14 show value and error of the reflectance in the IAS case. Fields 16 and 17 have currently
five entries each, containing the values and errors of the scaling factors of gases (i.e. αCO, αCH4, αH2O) and
HWHM. The last entry of Field 16 and 17 is empty (i.e. filled with 0), because value and error of the linear fit
parameter are already given in Field 13 and 14, respectively.

SCD fit flags

Field 23 specifies the slant column density fitting. For AMC-DOAS and IAS this field is not used. The meaning
is:

â 15: no - yes smoothing of measurements
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â 14: no - yes error weighting of fitting

â 13: no - yes use of ratioed measurements

â 12: no - yes use of pre-convoluted cross-sections

â 11: no - yes convolution of cross-sections

â 10: no - yes convolution on measurement grid

â 9: literature - SCIAMACHY cross-sections used

â 8: linear - non-linear fitting

â 7: no - yes use of SO2 correction

â 6-4: quality, to be interpreted as 3 bit integer, 0 lowest quality, 7 highest quality

â 3-0: not used at present

AMF look-up flags

Field 28 flags options used in the AMF look-up scheme. For AMC-DOAS and IAS all flags are set to ’false’.

â 15: clear - clear & cloud look-up

â 14: one AMF value - extended field-of-view

â 13: continental - maritime aerosol present

â 12: no - yes maximum SZA exceeded

â 11-0: not used at present

A.3. Limb & Occultation MDS

This component is of variable record length. The actual length is given in the DSRLEN field (the second
field). Typical values of variable numbers are given in italic and brackets. These values are then used for the
calculation of typical sizes and offsets of the file, components and fields.

â No of Records: 750

â Record Size: variable (33163)

â Component Size: variable (23.72 MB)

The limb measurement data set consists of several records containing the retrieval result of one vertically
sorted sequence of limb measurements. A complete limb scan, given by one limb state, may consist of
more than one limb profile depending on the integration time during one azimuth sweep of the corresponding
channels from which the fitting window parts were taken. Therefore, the number of records of the limb MDS
is given by the number of limb states and their integration times. According to the planning of SCIAMACHY
operations there will be approximately 25 Limb states per orbit and several integration times for the various
channels depending on the expected signal to noise level. This implies a variable number of records for the
limb MDS per fitting window application (example: 75) multiplied by the number of fitting window applications
(example: 10).

No Name Comments Unit Type # Size Offset

1 STARTTIME Start time of the profile - MJD 1 12 0

2 DSRLEN Data set record length (DSR) - ul 1 4 12

3 QUALITY Quality indicator (-1 if DSR is empty) - sc 1 1 16
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No Name Comments Unit Type # Size Offset

4 INTTIME Integration Time of each individual step in the

measurement grid

1/16 s us 1 2 17

5 METHOD Retrieval method ’O’ = optimal estimation, ’N’

= non-linear least squares fitting

- uc 1 1 19

6 REFH Height of the reference pressure km fl 1 4 20

7 REFP Reference pressure for hydrostatic equilibrium hPa fl 1 4 24

8 REFPSRC Reference pressure source ’E’ = ECMWF, ’C’

= climatology, etc.

- uc 1 1 28

9 NUM_RLEVEL Number of profile entries (nmain) - uc 1 1 29

10 NUM_MLEVEL Number of used measurement levels (nmeas) - uc 1 1 30

11 NUM_SPECIES Number of fitted main gas species (n1, on the

retrieval grid)

- uc 1 1 31

12 NUM_CLOSURE Number of fitted closure parameters (n2, on

the measurement grid)

- uc 1 1 32

13 NUM_OTHER Number of fitted other parameters (n3) - uc 1 1 33

14 NUM_SCALE Number of fitted scaling parameters for

auxiliary gases (n4, just one value per profile,

n4 is contained in n3)

- uc 1 1 34

15 TANGH Tangent height at the lower layer boundary km fl nmain (30) (120) (35)

16 TANGP Tangent layer pressure at the lower layer

boundary

hPa fl nmain (30) (120) (155)

17 TANGT Tangent layer temperature (mean) K fl nmain (30) (120) (275)

18 MAINREC Main species which have been fitted on the

coarse forward model grid

- LayerRec nmain * n1 (60) (960) (395)

19 SCALEDREC Scaled profiles which have been used for the

fit on the coarse forward model (60) grid

- LayerRec nmain * n4 (960) (1355)

20 MGRID Measurement Grid - Meas-Grid nmeas (13) (429) (2315)

21 STVEC_SIZE State vector size (nStVec = n1 * nmain + n2

+ n3)

- us 1 (2) (2744)

22 STATEVEC State Vector - StateVec nStV ec (117) (1404) (2746)

23 CMATRIXSIZE Correlation matrix size (mf = 1/2 * nStV ec *

(nStV ec - 1) )

- us 1 (2) (4150)

24 CORRMATRIX Correlation matrix of the fit - fl mf (6786) (27144) (4152)

25 RMS RMS of the fit - fl 1 (4) (31296)

26 CHI2 chi-square of the fit - fl 1 (4) (31300)

27 GOODNESS Goodness of the fit - fl 1 (4) (31304)

28 ITERATION Number of iterations for the fit (nI) - us 1 (2) (31308)

29 SUMMARY Measurement summary: number of used and

rejected wavelengths

- us 2 (4) (31310)

30 CRITERIA Convergency criteria - b 1 (1) (31314)

31 RESSIZE Residuals size (nres = nStVec * nI) - us 1 (2) (31315)

32 RESIDUALS Iteration step state vector residuals - fl nres (461) (1844) (31317)

33 NUM_ADDDIAG Number of additional diagnostics (nad) - us 1 (2) (33161)

34 ADDDIAG Additional diagnostics. See - fl nad (0) (0) (33163)

SGP OL1b-2 ATBD Version 6 Page 142 of 145



Docnr.: ENV-ATB-QWG-SCIA-0085
Issue : 2B
Date : 13th May 2015

A.3.1. Additional Explanations

Additional diagnostics

In the Limb retrieval number densities are retrieved, while the Level 2 product format provides entries only
for volume mixing ratios2. The main information about the retrieval was put into the ADDDIAG field. It is of
dynamic size and contains the entries in the following order:

1. Degree of freedom,

2. Information content (not computed and set 1.0),

3. Diagonal of averaging kernel (in partial columns),

4. Retrieved profile(s) in number density,

5. Initial profile(s) in number density,

6. Scaling factor multiplied on profile(s) in partial columns to calculate profile(s) in volume mixing ratio,

7. Scaling factor multiplied on profile(s) in partial columns to calculate profile(s) in number densities,

8. Averaging kernel in partial columns.

A.4. Limb Cloud MDS

This component is of variable record length. The actual length is given in the DSRLEN field (the second field).
Typical values of variable numbers are given in italic and brackets.

â No of Records: 100

â Record Size: variable (66)

â Component Size: variable (6 kB)

The number of records is depending on the number of limb states and the number of columns per limb state.
The number of 100 records is just a realistic estimation for a standard orbit and 4 columns per limb state. The
following table describes the entries in the MDS:

No Name Comments Unit Type # Size Offset

1 STARTTIME Start time of the limb clouds record - MJD 1 12 0

2 DSRLEN Data set record length (DSR) - ul 1 4 12

3 QUALITY Quality indicator (-1 if DSR is empty) - sc 1 1 16

4 INTTIME Integration time of DSR 1/16 s us 1 2 17

5 CLOUDDIAG Diagnostics of the cloud detection algorithm, details

see below

- b 1 1 19

6 FLAG_WCL Flag for normal water clouds - uc 1 1 20

7 MAXVAL_WCL Maximum value of CIR for normal water clouds - fl 1 4 21

8 MAXHEIGHT_WCL Height of maximum value of CIR for normal water

clouds

km fl 1 4 25

9 MAXHEIGHTIDX_WCL Height index of maximum value of CIR for normal water

clouds

- uc 1 1 29

2This is due to historical reasons: The Limb retrieval was completely changed for the offline processing, but the original Level 2 format
had to be used
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No Name Comments Unit Type # Size Offset

10 FLAG_ICL Flag for ice clouds - uc 1 1 30

11 MAXVAL_ICL Maximum value of CIR for ice clouds - fl 1 4 31

12 MAXHEIGHT_ICL Height of maximum value of CIR for normal water

clouds

km fl 1 4 35

13 MAXHEIGHTIDX_ICL Height index of maximum value of CIR for ice clouds - uc 1 1 39

14 FLAG_PSC Flag for polar stratospheric clouds - uc 1 1 40

15 MAXVAL_PSC Maximum value of CIR for polar stratospheric clouds - fl 1 4 41

16 MAXHEIGHT_PSC Height of maximum value of CIR for polar stratospheric

clouds

km fl 1 4 45

17 MAXHEIGHTIDX_ICL Height index of maximum value of CIR for ice clouds - uc 1 1 49

18 FLAG_NLC Flag for noctilucent clouds - uc 1 1 50

19 MAXVAL_NLC not used at present - fl 1 4 51

20 MAXHEIGHT_NLC Maximum height of strictly monotonically increasing

radiances for noctilucent clouds

km fl 1 4 55

21 MAXHEIGHTIDX_NLC Maximum height index of strictly monotonically

increasing radiances for noctilucent clouds

- uc 1 1 59

22 NUMTANH Number of tangent heights for CIR (m1) - us 1 2 60

23 TANH Tangent heights for CIR km fl m1 (0) (0) 62

24 NUMCIR Number of CIR (m2) - us 1 2 62

25 CIR CIR (m = m1 * m2) - fl m (0) (0) 64

26 NUMCLOUDPARS Number of additional limb cloud parameters (n) - us 1 2 64

27 CLOUDPARS Additional limb cloud parameters - fl n (0) (0) 66

A.4.1. Additional explanations

Cloud flags

The diagnostics of the cloud detection algorithm (field 5) are defined as follows: Each bit indicates whether the
algorithm for a certain cloud type succeeded (bit is set) or failed. The assignment of bits is

â 0: retrieval of normal water clouds succeeded

â 1: retrieval of ice clouds succeeded

â 2: retrieval of polar stratospheric clouds succeeded

â 3: retrieval of noctilucent clouds succeeded

â 4-7: not used

The values of the cloud flags have the following meanings:

Flag for normal water clouds (field 6):

â 0: no clouds,

â 1: partially cloudy,

â 2: fully cloudy,

â 3: bad data or cloud top height too high.

Flag for ice clouds (field 10):
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â 0: water cloud,

â 1: ice cloud,

â 2: bad data (MAXHEIGHT_ICL is greater than the warning tangent height, warn_th),

â 9: strange case (MAXVAL_ICL is greater than the upper bound for the CIR, upper_bound_cir).

Flag for polar stratospheric clouds (field 14):

â 0: no PSC,

â 1: PSC.

Fields 22-26 are reserved for colour index ratios as functions of tangent height. At the moment two CIR are
considered (1090/750 nm and 1630/750 nm), but the concrete number of CIR is not fixed and will be written
to field 24. Entries of field 25 run first over tangent heights and then over CIR, i.e. entries 1 to NUMTANH are
values of CIR1, entries NUMTANH+1 to 2*NUMTANH are values of CIR2 and so on.

For the current version the number of additional limb cloud parameters (field 15) is 0. Further parameters might
be added in future versions.
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