

Overview of HIP-1, HIP-2 and HIP-3 Intercomparison exercises of HPLC Phytoplankton Pigments Analysis.

Elisabetta Canuti

MVT Meeting, Lisbon, 18th October 2011

What does the JRC GEM Laboratory do?

Produces *in-situ* measurements (e.g. phytoplankton pigments) for satellite data products validation and biooptical algorithm development

Ensures quality to the analysis and quantifies uncertainties data through Intercomparison with other laboratories

Why we do not focus only on the Chl a pigment?

Collect the maximum number of information from the samples that we could analyze today <u>only</u>

2

2009-ongoing

The JRC organized 3 HPLC Intercalibration exercises of Phytoplankton Pigments (HIP exercises)

Overall objectives

Quantify single laboratory uncertainties

Quantify differences among European laboratories applying published methods

Create a reference community for HPLC pigments analysis in Europe

Benefits derived from the 3 exercises

Identify weakness in the methods or procedures
Improve the quality of results for single laboratories

Trace and document in time the condition of the single lab respect the others

During each exercise, focus on problems that emerged in the previous HIPs

JRC HIP: Laboratories and Methods compared

MVT Meeting, Lisbon, 18th October 2011

The laboratories involved from 2009

Exercise	Participants	Laboratories	Country	Method compared	Distributed natural samples			
		DHI	Denmark	•	_			
hip 1	3	LOV	France	1	108			
		JRC	European Commission					
		DHI	Denmark		· 			
	6	LOV	France					
hin 2		JRC	European Commission	2	270			
hip 2		NIVA	Norway	2	270			
		IMAR	Portugal					
		Stockholm Un.	Sweden					
		DHI	Denmark					
	6	LOV	France					
hin 2		JRC	European Commission	3	306			
hip 3		NIVA	Norway	° \/	306			
		IMAR	Portugal	V	Y			
		GKSS	Germany	•				

HIP: costs

MVT Meeting, Lisbon, 18th October 2011

The distributed mix standard and the analysis costs (supported by JRC)

Exercise	Year	Number of participants	Analysis, Standards & Shipments	Cost for natural samples		
HIP 1	2009	3	7301	?		
HIP 2	2010	6	6600	?		
HIP 3	2011	6	5000	???		

HIP: Data Evaluation in 3 steps

MVT Meeting, Lisbon, 18th October 2011

7

Performance Metrics (Method Validation)

Quality Level of the analysis:

State of Art > Quantitative > Semi-Quantitative > Routine

Analysis of Standard Mix

Evaluation of the HPLC Method using known samples

Basic step in lab self evaluation

Focusing on the HPLC method

Analysis of Natural Samples

Evaluation of the HPLC Method and of the Samples Extraction Procedure

Evaluating the difference introduced by the extraction procedure

STEP 3: UNCERTAINTIES ON NATURAL SAMPLES

HIP-1: Natural Samples Uncertainties

MVT Meeting, Lisbon, 18th October 2011

q

Average APD across the 12 batches of natural samples **Primary Pigments**

Chl. A, 6,8%

10 sample series (25 mm)	MV chlorophyll a	tot chiorophyll b	tot chlorophyl C	b-carotene	but-fucoxanthin	19-hex-fucoxanthin	Alloxanthin	Diadinoxanthin	Diatoxanthin	Fucoxanthin	Peridinin	Zeaxanthin	AVERAGE
APD(JRC)	9.3	15.4	17.4	14.7	13.6	12.8	14.3	18.1	24.9	13.8	11.4	17.4	15.3
APD(DHI)	6.5	5.8	14.9	19.6	5.5	7.3	8.7	7.8	13.5	8.0	16.4	15.3	10.8
APD(LOV)	4.6	16.0	5.6	15.3	11.0	5.8	5.6	11.1	13.0	6.1	13.4	9.0	9.7
avg(apd)	6.8	12.4	12.7	16.5	10.0	8.6	9.5	12.3	17.2	9.3	13.7	13.9	11.9
MIX_106 avg(apd)	2.0	6.7	10.3	1.9	5.3	8.8	4.1	6.1	7.1	1.5	7.8	9.8	7.2

HIP-2 Method Evaluation: Natural Samples

MVT Meeting, Lisbon, 18th October 2011

10

Average APD across the 12 batches of natural samples **Primary Pigments**

A reference subset is defined (labs D,L and J):

the labs with an APD > 25% for more than 3 Pp are excluded from the subset

	Reference set: Chl.A <5 % APD	Tot Chlorophyll A	Tot Chlorophyll B	Tot Chlorophyl C	Carotenes	but-fucoxanthin	19-hex-fucoxanthin	Alloxanthin	Diadinoxanthin	Diatoxanthin	Fucoxanthin	Peridinin	Zeaxanthin	MV chlorophyll a
C8	D	3.9	10.8	5.8	14.2	2.3	5.1	9.4	4.1	15.6	3.5	22.7	12.7	5.7
(Van Heukelem)	L J	5.0 4.6	11.3 7.1	7.2 10.9	32.0 26.3	9.5 9.7	5.4 10.1	11.6 20.0	5.4 5.2	8.3 16.0	6.3 8.9	10.6 17.0	31.0 20.2	7.8 4.6
C18	I	23.8	>100	27.3	82.1	101.3	25.2	35.3	28.9	26.8	19.8	36.2	41.3	26.0
(Jeffrey)	N U	15.1 >100	17.3 >100	78.0 >100	39.6 100.0	31.8 >100	20.4 >100	88.1 >100	43.6 >100	56.7 >100	28.4 >100	>100 >100	45.5 >100	
	Samples CV% (subset) Mix_107 CV% (subset)	7.7 1.1	9.2 0.8	7.3 1.6	9.6 1.8	6.2 0.8	5.7 0.6	21.0 0.9	8.2 0.9	13.7 1.4	9.4 0.7	13.4 2.1	8.4 1.6	8.3 1.2

HIP-2: Natural Samples Uncertainties Recalculation

MVT Meeting, Lisbon, 18th October 2011

11

Two laboratories ask to resubmit their data after the first comparison results. There are significant progress, in one case

APD	Tot Chlorophyll A	Tot Chlorophyll B	Tot Chlorophyl C	Carotenes	but-fucoxanthin	19-hex-fucoxanthin	Alloxanthin	Diadinoxanthin	Diatoxanthin	Fucoxanthin	Peridinin	Zeaxanthin
N	15.1	17.3	78.0	39.6	31.8	20.4	88.1	43.6	56.7	28.4	>100	45.5
N'	21.3	10.3	90.9	40.6	31.2	16.7	86.0	39.1	55.2	23.6	>100	39.5
U	> 100	> 100	> 100	> 100	> 100	> 100	> 100	> 100	> 100	> 100	> 100	> 100
U'	27.5	> 100	94.2	100.0	57.8	10.7	70.5	52.1	54.8	27.2	64.2	99.5

(in RED the resubmitted data)

12

The HIP exercises give a picture of the State of Art of European Accredited Labs for HPLC pigments analysis

By providing uncertainty values for the analysis performed

By leading to improvement of results for single labs over time

Contact

MVT Meeting, Lisbon, 18th October 2011

1

elisabetta.canuti@jrc.ec.europa.eu