The quest for basin-scale estimates of sea ice thickness

CryoSat

Ron Kwok Jet Propulsion Laboratory California Institute of Technology, Pasadena, CA

JP

7th ESA Earth Observation Summer School ESRIN, Frascati , Italy 4-14 August 2014

JPL

QuikScat Ice Cover (Nov)

- •Measurements of ice thickness
 - Submarine/other techniques
 - Satellites (radars and lidars)
- Arctic ice thickness and volume -Observations

Mean winter Ice Thickness: ~2.5-3 m

Winter Snow Thickness ~10-30 cm

Sea Ice Types from Satellites

On the image, the thick multiyear ice is bright; the thinner first year ice is dark. The figure shows the great reduction in multiyear sea ice over a 15 year period. Alaska is to the upper left. ESA EO Summer School 3 Kwok

Decline in old ice coverage (1999-2014)

Layered random medium

Observational Technologies

С

EM Pod

- At/above the surface
 - Coring and Drilling
 - •EM induction
 - •Ice Mass Balance Buoys
 - •Wide-band ice penetrating radar
 - Airborne lidar or radar profilers for freeboard
- A B A: buoy B: themistor string C: air temperature D: surface pinger F: water temperature F: water temperature E: bottom pinger F: water temperature E: bottom pinger F: water temperature E: bottom pinger F: water temperature

- Below the surface
 - Moored upward looking sonars
 - Submarine sonars

Sea Ice Coring-Not the way to get a basin-scale picture of the time-varying thickness field!

Ice Draft from submarine sonars

SCICEX (Scientific Ice Expeditions)

Range

Convergence north of Ellesmere and Greenland

Estimates are from Satellite Altimetry

Measurement of freeboard from Space (Radar)

CryoSat

Photo by N. Untersteiner

Measurement of freeboard from Space (Lidar)

Total Freeboard

Photo by N. Untersteiner

ESA EO Summer School

- •Assumptions:
 - Isostatic equilibrium
 - Surface penetration
- Measurement (from altimeter)
 - Sea surface reference (need to resolve leads)

 $h_{\rm ssh}(x,t) = h_{\rm g}(x) + h_{\rm a}(x,t) + h_{\rm T}(x,t) + h_{\rm d}(x,t) + O^2.$

- Elevation
- •Water density
- •External input:
 - Snow loading (depth and density)

Spot size of altimeter

GLAS instrument

- Number of Lasers: 3 sets (at 1064 nm and 532 nm)
- Firing rate: 40 Hz (70 m on the ground; separation of ~170 m)
- Pulse width: 6 ns
- Telescope: 100 cm
- Digitizer rate: 1 ns
- Laser divergence angle (beam width: 70-110 urad)
- Predicted accuracy of surface elevation: 15 cm
- ICESat
 - Inclination: 94 deg
 - Altitude: 600 km
 - Launched: Jan 2003
- Status:
 - Mission completion: 2009

ICESat Track

ICESat (profiling lidar) and RADARSAT (image)

ICESat track on RADARSAT image

Comparison with moorings

Ice thickness from ICESat

Limitations: Cloud cover

Trend in winter sea ice volume

S S

R.

Netter.

- Radar: 13.575 GHz
- Pulse repetition frequency: 18.181 kHz in SAR and SIN mode
- Pulse Bandwidth: 320 MHz (Range resolution: 46.8 cm)
- Burst duration (in SAR): 85.7 Hz
- Pulse width: 44.8 us
- Antenna: 2 reflectors 1.2 by 1.1 m (15 km footprint)
- Range sampling (in SAR): 0.2342 m
- (beam width: 70-110 urad)
- Predicted accuracy of surface elevation: 15 cm
- Pulse limited footprint: <u>313 by 1670 m</u>
- CryoSat-2
 - Inclination: 92 deg
 - Altitude: 717 km
 - Launched: Apr 2010
 - Status: Mission: on-going

Delayed-Doppler Processing

CryoSat-2 sea ice returns Ice/water discrimination

Radar range

JPL

Off nadir returns (pulse-peakiness)

JPL

Laxon et al. (2013)

Triangle: CS-2 Circle: Coupled ice ocean model

ICESat/CryoSat-2 ice thickness

Integrating and reporting the observations

Decline in sea ice thickness from submarine and ICESat records: 1978 - 2009

CMIP3 - sea ice thickness

Kwok, 2011

What about the Antarctic sea ice cover?

- Historical Records of ice draft from Submarines
- Ice Types from Satellites
- Ice Freeboard/Thickness from Satellites
 - There are several platforms that are capable of measuring freeboard from space: ICESat, CryoSat-2 (Nov 09), ICESat-2 (~2014)
- Ice Thickness and Volume
 - Finally, we have a method to estimate the basin-scale pattern of ice thickness of the Arctic Ocean and observe its seasonal and interannual variability
 - First time that we can say, with some certainty, the total ice volume of the Arctic Ocean sea ice (overall heat and mass balance)

QUESTIONS?