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Contents of the three lectures

• Monday: Introduction to inverse problems and uncertainty
quantification in atmospheric remote sensing

• Tuesday: Introduction of Markov chain Monte Carlo
method for estimating uncertainties

• Wednesday: More examples of how to characterize
uncertainties in remote sensing (including modeling
uncertainties)
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Contents of this lecture

• Introduction to inverse problems in remote sensing

• Uncertainties and random variables

• Bayesian approach for solving inverse problems

• Example in atmospheric remote sensing: GOMOS
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Satellite remote sensing
Satellite remote sensing has become an important way to
monitor and study our environment.

• Land, vegetation, oceans, snow,
ice, atmosphere, ...
• Global observations from pole to

pole
• Continous observations
• Operational need for data:

monitoring, forecasting, support
in emergency situations, ...
• Support for monitoring the effects

of international regulations,
support for decision making ...
• Research: continous time series,

combination of measurements,
comparison with models ...
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Satellite remote sensing and inverse problems

• Remote sensing
measurements are typically
non-direct measurements
• Data processing involves

solving inverse problems
(data retrieval)
• Phyiscal modeling of the

measurements often
complicated: typically
nonlinear
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Retrieval in practice

• Operative algorithms need to be fast, robust, reliable

• Often simplifications and assumptions are needed

• Typically also additional information needed for solving the
problem (ill posed problem).

• Important to characterize the uncertainties and validity
of the simplifications and assumption – Uncertainty
Quantification (UQ)
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Uncertainty Quantification (UQ)
• Uncertainty quantification: characterizing the errors and

uncertainties
reduction of the uncertainties, if possible

• UQ is becoming more and more important in
environmental sciences.

• In remote sensing UQ is particularly important for:
• Combining data from different sources
• Assimilation
• Comparing with models
• Model discrepancy
• Time series analysis, trends
• Supporting decision making
• Forecasting

• UQ growing area of research: theory, computational
methods, simulations
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This lecture series: UQ using Bayesian approach

• Bayesian formulation gives natural tools to characterize the
impact of different errorr sources.

• Allowes including additional information to the retrieval in a
natural way.

• In atmospheric remote sensing method called Optimal
Estimation -algorithm by C. Rodgers used extensively
which is based on Bayesian formulation
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Forwad problem

y = f (x)

where

y ∈ IRm – unknown variable

x ∈ IRn – measurements, known paramteres

f – function describing the relationship between the unknown
variable and known parameters
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Inverse problem

y = f (x,b)

where

y ∈ IRm – measurements, observations, data

x ∈ IRn – unknown parameters (unknown state) which we are
interested

f – function describing the relationship between the
measurements and the unknown parameters (forward model)

b – known model parameters
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Linear case - example

• Inverse problem: find x when y is measured and

y = f (x)

• When the dependence f is linear, we can describe the
problem with matrix formulation:

y = Ax

where A is m × n matrix
• Simple solution would now be

x = A[−1]y

where A[−1] would be ’in some sense’ the inverse of matrix A.
• In practice it is often more complicated.
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Well posed and ill-posed problems

Hadmard’s definition (1902) of a well posed problem:
(i) The solution exists.
(ii) The solution is unique.
(iii) The solution hardly changes if the parameters (or initial

conditions) are slightly changed.

If at least one of the criteria above is not fulfilled the problem is
sayd to be ill-posed.

In remote sensing the problems are typically ill-posed as there
is not enough data to result unique solutions. Therefore we
need additional information to solve the problem.
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Solving an ill-posed problem

Typcal ways of introducing additional information to inverse
problems:
• Decreasing the size of the problem: discretization
• Regularization methods (eg. Tikhonov regularization:

assuming smoothness)
• Bayesian approach: describing previous knowledge as

a priori information
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Measurement error, noise

• In practice measurements include always noise (ε)

y = f (x)+ ε

(assuming that nose is additive)

• By repeating the measuremenets we get different answers
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Measurements as random variables

• It is natural to consider
measurements as random variables.

• Intuitively Random variables get
probable values often and less
probable values only occasionally.
These realizations form a distribution.

• Let X be a random variable. The
distribution π of its realisations can
be described as an integral π

πX (A) = P{X ∈ A} =
∫

A
p(x)dx

where p(x) is the probablility density
function (pdf) of the random variable
X .
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Gaussian distributions:
• 1D Gaussian (Normal) distribution (N(µ, σ 2)) with mean µ
and covariance matrix C has pdf

p(x) =
1

√
2πσ 2

exp
(
−

1
2
(x − µ)2

σ 2

)

• Multivariate Gaussian distribution (N(µ,C)) The n
dimensional multivariate Gaussian distribution with mean µ and
covariance matrix C has pdf

p(x) = (2π)−n/2
∣∣C∣∣−n/2 e−

1
2 (x−µ)

′C−1(x−µ)

where C is n × n positive definite symmetric matrix.
If the components are independent, with C = σ 2I, then the
density simplifies to

p(x) = (2π)−n/2σ−ne−
1
2
∑n

i=1

(
xi−µi
σ

)2
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Statistical inverse problem

• Because the measurements are random variables it is
natural to consider also the unknown X as a random variable.

• Now the inverse problem is to search for the conditional
distribution of X assuming that measurement Y = y :

πX |Y (A) = P{X ∈ A |Y = y} =
∫

A
p(x | y) dx

where p(x | y) is the pdf of the conditional distribution.

• The pdf p(x | y) describes the probability that unknown X = x
when the measurement Y = y This is what we are looking for!
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Conditional probability

According to elementary probability calculation:

Joint probability that both events A and B take place

P(A ∩ B) = P(A |B)P(B)

Now conditional probability is:

P(A |B) =
P(A ∩ B)

P(B)
=

P(B |A)P(A)
P(B)

asuming that P(B) 6= 0.
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Bayesian solution to an inverse problem
• The same idea of elementary probabity is used in Bayesian
solution to an inverse problem.

• Bayes formula

p(x | y) =
plh(y | x) ppr(x)

p(y)

where

• p(x | y) is the pdf of a posteriori distribution

• ppr(x) is the pdf of a priori distribution. Describes prior
knowledge of x .

• plh(y | x) is the pdf of the likelihood distribution.
Characterizes the dependence of the measurements on the
unknown.

• p(y) 6= 0 is a scaling factor (constant)
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• The scaling factor is obtained by integrating over the state
space:

p(y) =
∫

plh(y | x)ppr (x)dx

• It is typically not considered, but we will come back to this
later in the lectures.
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A posteriori distribution

• The Bayes formula

p(x | y) =
plh(y | x) ppr(x)

p(y)

describes the solution of an
inverse problem

Natural way for using all
available information: how to
combine new measurements
with our old prior knowledge
(p(x) −→ p(x | y))

• The solution is a distribution

p(x|y)

p(y|x)

p(x)
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Toy examples of 2-dimensional posterior distributions
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How to characterize solution which
is a distribution?
• Maximum a posteriori (MAP)

estimate - most probable value

MAP = x̂ = argmax
x
{p(x | y)}

• Expectation

x = IEX |Y [x ] =

∫
IRn

x p(x | y) dx

• The uncertainty of the estimates is
described as the ’width’ of the
distribution

E[x] MAP

p(x|y)

• Shape of the distribution
k th moment: IEX |Y [(x − x)k ]
k = 2, variace
k = 3, skewness
k = 4, kurtosis

23 / 38



Linear inverse problem

Linear problem:
y = Ax + ε

• Assume Gaussian noise ε ∼ N(0,Cy ) and prior information
ppr(x) = N(x0,Cx0).
• In this special case the posterior distribution is also normally
distributed

p(x | y) ∝ e−
1
2 (x−x)T Q(x−x),

where the the expectation and the covariance matrix are:

x = Q−1(C−1
x0

x0 + AT C−1
y y), Q−1

= (C−1
x0
+ AT C−1

y A)−1.

• In this case the posterior estimate x̂ = x and the posterior
covariance matrix Cx̂ = Q−1 fully describe the posterior
distribution.
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MAP and ML estimate

p(x | y) ∝ p(y | x)p(x)

• Assume ’non-informative’ prior distribution p(x) = c

• Now maximum a posteriori (MAP) estimate is the same as
Maximum likelihood estimate (ML)

MAP = argmax
x
{p(x | y)} = argmax

x
{p(y | x)} = ML

• In natural sciences ’non-informative’ prior is often attractive
as it allows solutions that are purely based on measurements.

• However, there are often non-physical solutions that shoud
not be taken into account, like positivity.
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Special case: Gaussian noise
• Assume additive, normally distributed measurement noise
ε ∼ N(0,Cy )

• The likelihood function

plh(y | x) =
1

(2π)
m
2

√∣∣Cy
∣∣ × exp(−

1
2
(f (x)− y)T C−1

y (f (x)− y)).

• Assuming non-informative prior density the posterior
distribution is proportional to the likelihood function only:

p(x | y) ∝ p(y | x),

and the MAP estimate x̂ equals with ML estimate which further
equals with the one that minimizes the sum of squared
residuals function

SSR(x) = (f (x)− y)T C−1
y (f (x)− y).

• This formula has been the basis for the traditional parameter
estimation, which concentrates simply on minimizing the SSR
function (least squares solution).
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In practice ...

• Prior: Typically, prior information is defined as Gaussian for
simplifying computations.

• In linear Gaussian case the problem reduces to simply
solving weighted least squares problem.

• Non-linear and/or non-Gaussian problems. Typically
assumed that solution is ’close to Gaussian’.
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Different techniques to solve
nonlinear/non-Gaussian problems

Linearization and Gaussian assumption:
• Linearize the problem. If noise after linarization is close to

Gaussian then linear Gaussian theory and simple matrix
inversions can be applied (assuming that prior is also
Gaussian).
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Non-linear optimization - seaching for maximum a posteriori
(MAP) or maximum likelihood (ML) estimate:
• Iterative methods to search for MAP (ML) and assume

linearity around estimate. Approximate uncertainty with
covariance matrix. Some commonly used methods:
• Levenberg-Marquardt iterative algorithm.

(See eg. Press et al. Numerical Recipes. The art of
scientific computing).

• Combination of steepst descent (gradient) and Newtonian
iteration (approximation with quadratic function).

• Ready made algorithms are available.
• MAP (ML) estimate x̂ is computed. Posterior is assumed to

be Gaussian close to estimate x̂ and posterior covariance
matrix Cx̂ is computed.

• In atmospheric research typically used iteratively method
called Optimal estimation which is based on Bayes
theorem.
(See Rodgers 2001: Inverse methods for atmospheric
sounding)
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GOMOS/Envisat: Stellar occultation instrument

GOMOS - Global Ozone Monitoring by Occultation of Stars

• One of the three atmospheric
instruments on-board ESA’s Envisat
satellite
• Launched 2002
• Measurements till April 2012
when Envisat lost connection to
Earth.

Measurement principle

• ’Fingerprints’ of atmospheric
gases in transmission spectra

• 20–40 stellar
occultations/orbit.

• 50–100 ray path
measurements/star from
100 km down to 10 km.

’Self-calibrating’

Tλ,` =
Iλ,`
Istar
λ
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Cross sections of gases relevant to GOMOS (UV-VIS)
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Absorption by gases

Transmission spectra measured by GOMOS at descinding
altitudes from 100 km down to 5 km.
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Refraction
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Modelling
• The transmission at wavelength λ, along the ray path `,
includes T abs

λ,` due to absorption and scattering by gases and
T ref
λ,` due to refractive attenuation and scintillation.
• T abs

λ,` is given by the Beer’s law,

T abs
λ,` = exp

− ∫
`

∑
gas

α
gas
λ (z(s))ρgas(z(s))ds


where the integral is over the ray path `.

The temperature dependent cross sections αgas are assumed to
be known from laboratory measurements.

The inversion problem is to estimate the gas profiles ρgas(z)
from the measurements

yλ,` = T abs
λ,`T ref

λ,` + ελ,`.
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Operational algorithm: Assumptions
Model:

T abs
λ,` (ρ) = exp

− ∫
`

∑
gas

α
gas
λ (z(s))ρgas(z(s))ds


From now on we consider data to be simply:

yλ,` = T abs
λ,` + ελ,`.

where λ = λ1, . . . , λ3, ` = `1, . . . `M

• Noise Gaussian, uncorrelated between different altitudes
and wavelengths.
• T ref

λ,`, scintillation and dilution, obtained from separate
measurements (scintillation/turbulence effects not fully
corrected).
• Temperature dependence of cross–sections can be

modelled with ’effective’ cross sections (only wavelength
dependence)
• Temperature obtained from ECMWF
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Operational two step algorithm

Since the cross sections are assumed constant on each ray
path and noise uncorrelated, the inversion separates into

T abs
λ,` = exp

[
−

∑
gas

α
gas
λ,`N

gas
`

]
, λ = λ1, . . . , λ3,

with Ngas
` =

∫̀
ρgas(z(s))ds, ` = `1, . . . , `M .

• Two step approach:
• Spectral inversion - retrieval of horizontally integrated

densities of several constituents but each altitude
separately

• Vertical inversion - retrieval of full profile for each
constituent separately
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Spectral inversion

The line density vector N` = (N
gas
` ), gas = 1, . . . ,ngas with the

posterior density

P(N`|y`) ∝ e−
1
2 (T`(N`)−y`)C−1

` (T`(N`)−y`)p(N`),

is fitted to the spectral data y` = (yλ,`), C` = diag(σ 2
λ,`),

λ = 1, . . . , 3, separately for each ray path `.

• Prior: Fixed prior for neutral density from ECMWF. For gases
and aerosols non-informative prior

• Non-linear problem solved iteratievely using
Levenber-Marquard algorithm.
• MAP (=ML) estimate N̂` obtained with uncertainty described
by its covariance matrix CN̂` for all ray paths (altitudes) `
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Pointestimate demo

BLUE - GOMOS
measurement
RED - GOMOS iterative fit
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