
Some Useful References

• Atmospheric Data Analysis by R. Daley, Cambridge 
University Press.

• Atmospheric Modelling, Data Assimilation and 
Predictability by E. Kalnay, C.U.P.

• The Ocean Inverse Problem by C. Wunsch, C.U.P.
• Inverse Problem Theory by A. Tarantola, Elsevier.
• Inverse Problems in Atmospheric Constituent 

Transport by I.G. Enting, C.U.P.
• ECMWF Lecture Notes at www.ecmwf.int
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The Kalman Filter
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Extended Kalman Filter

• Assumes the model is non-linear and 
imperfect.

• The tangent linear model depends on the 
state and on time.

• Could be a “gold standard” for data 
assimilation, but very expensive to implement 
because of the very large dimension of the 
state space (~ 106 – 107 for NWP models).



Ensemble Kalman Filter
• Carry forecast error covariance matrix 

forward in time by using ensembles of 
forecasts:

• Only ~ 10 + forecasts needed.
• Does not require computation of tangent 

linear model and its adjoint. 
• Does not require linearization of evolution of 

forecast errors.
• Fits in neatly into ensemble forecasting.
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4d-Variational Assimilation



Non-sequential Intermittent 
Assimilation

analysis + model analysis + model analysis + model

obs obs obs obs obs obs



4D Variational Data Assimilation

given X(to), the 
forecast is 
deterministic

vary X(to) for best fit to data
to t

obs. & 
errors



4d-Variational Assimilation

constraint strong a as                                                   
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Minimize the cost function by finding the gradient 

(“Jacobian”) with respect to the control variables in 
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4d-VAR Continued

The 2nd term on the RHS of the cost function 
measures the distance to the background       
at the beginning of the interval. The term 
helps join up the sequence of optimal 
trajectories found by minimizing the cost 
function for the observations. The “analysis”
is then the optimal trajectory in state space. 
Forecasts can be run from any point on the 
trajectory, e.g. from the middle. 



4d-VAR For Single Observation
at time t
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The Time-Stepping Model
Scalar Case

M(x0) x1

M(x1) x2
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Vector Case
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adjoint of the tangent-linear model

Transpose reverses the sequence of matrices in the chain 
rule, so the tangent linear model is run BACKWARDS in time.



A Useful Result
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4d-VAR for Single Observation
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4d-VAR Procedure

• Choose               for example.
• Integrate full (non-linear) model forward in 

time and calculate    for each observation.
• Map    back to t=0 by backward integration of 

TLM, and sum for all observations to give the 
gradient of the cost function.

• Move down the gradient to obtain a better 
initial state (new trajectory “hits” observations 
more closely)

• Repeat until some STOP criterion is met.

note: not the most efficient algorithm
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Comments
• 4d-VAR can also be formulated by the method of 

Lagrange multipliers to treat the model equations as 
a constraint. The adjoint equations that arise in this 
approach are the same equations we have derived 
by using the chain rule of partial differential 
equations.

• If model is perfect and B0 is correct, 4d-VAR at final 
time gives same result as extended Kalman filter (but 
the covariance of the analysis is not available in 4d-
VAR).

• 4d-VAR analysis therefore optimal over its time 
window, but less expensive than Kalman filter.



Incremental Form of 4d-VAR

• The 4d-VAR algorithm presented earlier is 
expensive to implement. It requires repeated 
forward integrations with the non-linear 
(forecast) model and backward integrations 
with the TLM.

• When the initial background (first-guess) 
state and resulting trajectory are accurate, an 
incremental method can be made much 
cheaper to run on a computer. 
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Incremental Form of 4d-VAR
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Taylor series expansion 
about first-guess trajectory 
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4D Variational Data Assimilation

• Advantages
– consistent with the governing eqs.
– implicit links between variables

• Disadvantages
– very expensive
– model is strong constraint
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data assimilation cycles

extended-range forecasts

Testing Earth System Models
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