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Overview

• Key elements of an NWP system
– Forecast model
– observations
– data assimilation

• Satellite data used in NWP
– sounding data
– surface (window) data
– active data

• Data assimilation systems
– optimal interpolation (retrievals)
– Variational (3D/4D) methods (direct radiance assimilation)

• Radiance assimilation issues
– background error covariances
– systematic error
– treatment of cloud and the surface
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ECMWF:
• A European organisation with headquarters in the UK

• Established by Convention in force from November 1975

• Principal objectives:
– development of methods for forecasting weather beyond two days ahead

– collection and storage of appropriate meteorological data

– daily production and distribution of forecasts to the Member States

– provision of archival/retrieval facilities to the Member States

– provision of computational resources to the Member States

• Staff of about 200

Member States:
Belgium Norway
Denmark Austria
Germany Portugal
Spain Switzerland
France Finland
Greece Sweden
Ireland Turkey
Italy United Kingdom
The Netherlands 

Co-operation agreements with:
Croatia Hungary
Czech Republic Slovenia

Iceland
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ECMWF activities

• Medium-range forecasts of the state of the atmosphere,  
land and ocean-waves to ten days ahead

– Deterministic (single high-resolution forecast)
– Probabilistic (ensemble of perturbed lower-resolution 

forecasts)

• Boundary conditions (initial conditions) for Member States’ 
short-range regional forecasting systems

• Seasonal forecasts (including ocean circulation) to six 
months ahead

• Re-analyses of historical  observations (for climate 
applications)

Key elements of an Numerical 
Weather Prediction (NWP) system

• The forecast model time evolves fields of geophysical 
parameters (e.g. T/Q/U/V/O3) following the laws of 
thermodynamics and chemistry 

• The initial conditions used to start the forecast model are 
provided by the analysis

• The analysis is generated from observations relating to 
the geophysical parameters combined with a priori
background information (usually a short-range forecast 
from the previous analysis).

•This combination process is known as data assimilation
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The ECMWF forecast model (1)
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The ECMWF forecast model (2)
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The Data Assimilation Process

Observations
intermittently adjust 
the evolution of the 

forecast model

Observations Used in NWP

• SYNOP(surface)
– Ps, Wind-10m, RH-2m

• AIREP
– Wind, Temp

• DRIBU(drifting buoy)
– Ps, Wind-10m

• TEMP(balloon))
– Wind, Temp, Spec Humidity

• DROPSONDE
– Wind, Temp

• PILOT/Profiler
– Wind

• PAOB
– Ps

• Polar orbiting platforms
– HIRS (x3)
– MSU 
– AMSU-A / B (x4)
– SSU
– SSM/I(S) (x3)
– QuickScat
– ERS-scat
– AIRS 

• Geostationary platforms
– METEOSAT (5/7)
– GOES (E/W)
– GMS

In situ (conventional) Remotely sensed (satellite)
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Coverage of in-situ measurements

Geographical coverage of satellite 
observing system

NOAA AMSUA/B HIRS, AQUA AIRS DMSP SSM/I

NASA QuickScat GEOS

TERRA / AQUA MODIS NOAA SBUV



ESA-ESRIN, Frascati, Rome, Italy

18th – 29th August 20037

The importance of satellite data

The limited coverage of in-situ observations means 
that satellite data are extremely important for global 
numerical weather prediction, particularly in the 
medium-range

Improvements in the quality of satellite observations and the 
techniques developed to assimilate the data have resulted in 
satellites now being of equal or greater importance than 
radiosonde observations even in data dense regions of the 
Northern Hemisphere

Impact of withdrawing different types of 
observations on forecast quality
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Impact of withdrawing different types of 
observations on forecast quality
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Evolution of forecast skill
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Break

So satellite data are very important… what do they measure

What do the satellite instruments measure?
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They DO NOT measure TEMPERATURE
They DO NOT measure HUMIDITY
They DO NOT measure WIND

Satellite instruments (active and passive) simply measure the radiance L that 
reaches the top of the atmosphere at frequency < . The measured radiance is 
related to geophysical atmospheric variables by the radiative transfer equation
(covered in previous lectures).
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FREQUENCY SELECTION

By selecting radiation at different frequencies or CHANNELS a satellite 
instrument can provide information on a range of geophysical variables.  

In general the channels used within NWP may be considered as one of 3 
different types

• Atmospheric sounding channels (passive instruments)

• Surface sensing channels (passive instruments)

• Surface sensing channels (active instruments)

In practice (and often despite their name) real satellite instruments have  
channels which are a combination of atmospheric sounding and surface sensing

ATMOSPHERIC SOUNDING CHANNELS

These channels are located in parts of the infra-red and microwave spectrum for which the 
main contribution to the measured radiance is described by:
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That is they avoid frequencies for which surface radiation and cloud contributions are important.

They are primarily used to obtain information about atmospheric temperature and humidity.

AMSUA-channel 5 (53GHz) HIRS-channel 12 (6.7micron)
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SURFACE SENSING CHANNELS (PASSIVE)
These are located in window regions of the infra-red and microwave spectrum at frequencies 
where there is very little interaction with the atmosphere and the main contribution
to the measured radiance is:

=)(νL Surface emission [ Tsurf , ε(u,v) ] 

These are primarily used to obtain information on the surface temperature and quantities that
influence the surface emissivity such as wind (ocean) and vegetation (land).  They can also be 
used to obtain information on clouds/rain and cloud movements (to provide wind information)

SSM/I channel 7 (89GHz) HIRS channel 8 (11microns)

ACTIVE INSTRUMENTS

These (e.g. scatterometers) illuminate the surface in window parts of the spectrum such that

=)(νL Surface scattering [ ε(u,v) ]

These primarily provide information on ocean winds (via emissivity) without Tsurf ambiguity

Quick-scat 
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ATMOSPHERIC TEMPERATURE SOUNDING

If radiation is selected in a sounding channel for which

And we define a function   K(z) = 





dz
dτ

If the primary absorber is a well mixed gas (e.g. oxygen or CO2)
it can be seen that the measured radiance is essentially a weighted 
average of the atmospheric temperature profile, or

dzzKzTBL ∫
∞
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The function K(z) that defines this vertical average is known as a 
WEIGHTING FUNCTION

IDEAL WEIGHTING FUNCTIONS

K(z)

z

If the weighting function was a 
delta-function, this would mean that
the measured radiance is sensitive
to the temperature at a single level
in the atmosphere.

K(z)

z

If the weighting function was a 
box-car function, this would mean
that the measured radiance was 
sensitive to the mean temperature
between two atmospheric levels



ESA-ESRIN, Frascati, Rome, Italy

18th – 29th August 200313

REAL ATMOSPHERIC WEIGHTING FUNCTIONS

A lot of radiation is emitted from the 
dense lower atmosphere, but very 
little survives to the top of the 
atmosphere due to absorption.

At some level there is an
optimal balance between the 
amount of radiation emitted 
and the amount reaching the 
top of the atmosphere

High in the atmosphere very 
little radiation is emitted, but 
most will reach the top of the
atmosphere

K(z)
K(z)

z

REAL WEIGHTING FUNCTIONS continued...

• The altitude at which the peak of the 
weighting function occurs depends on the 
strength of absorption for a given channel

•Channels in parts of the spectrum where the 
absorption is strong (e.g. near the centre of 
CO2 or O2 lines ) peak high in the 
atmosphere

•Channels in parts of the spectrum where the 
absorption is weak (e.g. in the wings of CO2 
O2 lines) peak low in the atmosphere

By selecting a number of channels with varying absorption strengths 
we sample the atmospheric temperature at different altitudes

AMSUA
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HIRS AMSUA AIRS

Ch-14

Ch-13

Ch-12

Ch-1

Ch-2
Ch-11

Break

So we know what satellites measure, how do they fit in to NWP..?
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The data assimilation problem (1)
Background information

Observations

Analysis
Initial conditions
for next forecast

The data assimilation problem (2)

The analysis is an optimal combination of a priori
background information and new observed data.

It is optimal in that it is the Maximum Liklehood solution 
and respects the uncertainty in both sources of information

Using Bayes theory the analysis becomes the state of the 
atmosphere that minimizes a COST or PENALTY 
FUNCTION

It is completely analogous to the inverse problem solved 
for satellite retrievals.
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The data assimilation problem (3)
The COST function

])H[(])H[()()()( 11 xyxyxxxxxJ T
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T
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Multivariate 3 or 4
dimensional state of 
the atmosphere 
(background estimate 
shown with subscript b

Background error
covariance

Vector containing
all observed data

Observation 
error covariance

Operator mapping
atmospheric state
to observation space

The data assimilation problem (4)
In the past linear (one-step) implementations of Optimal 
Interpolation (OI) have been used to produce the analysis

])[(][ 1
b

TT
a xyx HRHBHBH −+= −

Apart from the need to divide the globe in to small boxes (to 
reduce the dimensionality of the problem) another limitation of 
this approach was that the observations had to be linearly related
to the analysis variables (T/Q/U/V)

This was fine for in-situ data (e.g. radiosondes )

But satellite radiance data had to be converted to retrievals of
(T/Q) before being supplied to the assimilation system …
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E X T R A C T I N G  A T M O S P H E R I C  

T E M P E R A T U R E  F R O M  R A D I A N C E  

M E A S U R E M E N T S

I f  w e  k n o w  t h e  e n t i r e  a t m o s p h e r i c  t e m p e r a t u r e  p r o f i l e  T ( z )  
t h e n  w e  c a n  c o m p u t e  ( u n i q u e l y )  t h e  r a d i a n c e s  a  s o u n d i n g  

i n s t r u m e n t  w o u l d  m e a s u r e  u s i n g  t h e  radiative transfer 
equation .   T h i s  i s  s o m e t i m e s  k n o w n  a s  t h e  f o r w a r d  

p r o b l e m

I n  o r d e r  t o  e x t r a c t  o r  r e t r i e v e t h e  a t m o s p h e r i c  t e m p e r a t u r e  

p r o f i l e  f r o m  a  s e t  o f  m e a s u r e d  r a d i a n c e s  w e  m u s t  s o l v e  w h a t  
i s  k n o w n  a s  t h e  i n v e r s e  p r o b l e m

U n f o r t u n a t e l y  w i t h  a  f i n i t e  n u m b e r  o f  c h a n n e l s  a n d  
w e i g h t i n g  f u n c t i o n s  t h a t  a r e  g e n e r a l l y  b r o a d ,  t h e  i n v e r s e  
p r o b l e m  i s  f o r m a l l y  i l l -p o s e d (a n  i n f i n i t e  n u m b e r  o f  

d i f f e r e n t  t e m p e r a t u r e  p r o f i l e s  c o u l d  g i v e  t h e  s a m e  

m e a s u r e d  r a d i a n c e s )

See paper by Rodgers 1976 Retrieval of atmospheric temperature and composition from remote 
measurements of thermal radiation. Rev. Geophys.Space. Phys. 14, 609-624

The retrieval schemes differ in the way prior  informat ion is used 
to  supplement the information of the measured radiances and 
solve the inverse problem !

RETRIEVAL ALGORITHMS

Three different types of retrieval have been used in NWP:

•Exact or least squares solutions to reduced inverse problems

•Regression (statistical / library search / neural net) methods

•Forecast background methods
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1.  Solutions to reduced inverse problems
W e  a c k n o w l e d g e  t h a t  t h e r e  i s  a  l i m i t e d  a m o u n t  o f  i n f o r m a t i o n  i n  t h e  m e a s u r e d  r a d i a n c e s  a n d  re - f o r m u l a t e

the  i l l- p o s e d  i n v e r s e  p r o b l e m  i n  t e r m s  o f  a  r e d u c e d  n u m b e r  o f  u n k n o w n  v a r i a b l e s t h a t  c a n  b e  b e t t e r  
e s t i m a t e d  b y  t h e  d a t a

e . g .  D e e p  m e a n  l a y e r  t e m p e r a t u r e s ,  T o t a l  C o l u m n  W a t e r  /  O z o n e   o r E O F ’ s  (e i g e n f u n c t i o n s)

Unfo r tuna t e ly  i t  i s  d i f f i cu l t  t o  o b j e c t i v e l y  q u a n t i f y  t h e  e r r o r  i n  t h e s e  q u a n t i t i e s ( w h i c h  i s  v e r y  i m p o r t a n t  t o  
u s e  t h e  r e t r i e v a l  i n  N W P )  d u e  t o  t h e  s o m e t i m e s  s u b j e c t i v e  c h o i c e o f  r e d u c e d  r e p r e s e n t a t i o n .   

2.   Regress ion and Library search methods
U s i n g  a  s a m p l e  o f  t e m p e r a t u r e  p r o f i l e s  m a t c h e d  ( c o l l o c a t e d )  w i t h a  s a m p l e  o f  r a d i a n c e  
o b s e r v a t i o n s / s i m u l a t i o n s ,  a  s ta t i s t i ca l r e l a t i o n s h i p  i s  d e r i v e d  t h a t  p r e d i c t s  e . g  a t m o s p h e r i c  t e m p e r a t u r e  f r o m  
t h e  m e a s u r e d  r a d i a n c e .

e . g .  N E S D I S  o p e r a t i o n a l  r e t r i e v a l s  o r  t h e  3 I  a p p r o a c h

T h e s e  t e n d  t o  b e  l i m i t e d  b y  t h e  s t a t i s t i c a l  c h a r a c t e r i s t i c s  o f  t h e  t r a i n i n g  s a m p l e  /  p r o f i l e  l i b r a r y and  wi l l  no t  
p r o d u c e  p h y s i c a l l y  i m p o r t a n t f e a t u r e s  i f  t h e y  a r e  s t a t i s t i c a l l y  r a r e i n  t h e  t r a i n i n g  s a m p l e .  F u r t h e r m o r e ,  
t h e i r  a s s i m i l a t i o n  c a n  d e s t r o y  s h a r p  p h y s i c a l  f e a t u r e s  i n  t h e  a n a l y s i s !

3 .   Forecas t  Background or  1DVAR Methods
T h e s e  u s e  a n  e x p l i c i t  b a c k g r o u n d  o r  first-guess p r o f i l e  f r o m  a  s h o r t  r a n g e  f o r e c a s t  a n d  p e r f o r m  
o p t i m a l  a d j u s t m e n t s u s i n g  t h e  m e a s u r e d  r a d i a n c e s.   T h e  a d j u s t m e n t s m i n i m i z e a  c o s t  f u n c t i o n

Forecast Background Retrievals
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And minimize with a single step solution 
(if channels / data are selected to avoid 
nonlinear effects

Or iterate towards a solution if H 
incorporates nonlinear effects (e.g.cloud)
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Forecast Background Retrievals
These have a number of advantages that make them more suitable for NWP than 
other methods

•The prior information (short-range forecast) is very accurate (more than statistical 
climatology) which improves retrieval accuracy.

•The prior information contains information about physically important features
such as fronts, inversions and the tropopause.

•The error covariance of the prior information and resulting retrieval is better 
known (crucial for the subsequent assimilation process).

•The retrieval may be considered an intermediate step towards the direct 
assimilation of radiances (no external sources of prior information)

BUT the error characteristics of the retrieval may be complicated 
due to its correlation with the forecast background (used twice!)

Assimilation of satellite retrievals 
in NWP

Whatever approach is adopted to convert radiance measurements to
temperature, humidity etc…The use of satellite retrievals is problematic for 
two main reasons:

1) They retain characteristics of the a priori information that are very 
difficult to remove.

2) They generally have complicated error structures that are difficult to 
model in the subsequent assimilation (e.g. strong correlations between levels 
and variables)

For these reasons the use of retrievals in global NWP has generally
been superceded by the direct assimilation of radiance data.
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End of lecture

…next lecture…

Radiance assimilation

Direct assimilation of radiances in NWP
Variational analysis methods such as 3DVAR and 4DVAR allow the direct 
assimilation of radiance observations (without the need for and explicit retrieval 
step). 

This is because such methods do NOT require a linear relationship between the 

observed quantity (radiance) and the analysis variables (T/Q..)

The retrieval (or inversion) is essentially incorporated within the main analysis
by finding the 3D or 4D state of the atmosphere that minimizes the cost function

The forecast background still provides the prior information to supplement the 
radiances, but the inversion is further constrained by the simultaneous 
assimilation of other observations.

The cost function is minimized by iteration using efficient adjoint techniques
but the process is still expensive and requires super-computers
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Implementation of 3DVAR

The vector x is a full global 3D vector describing the state of the atmosphere 
and has a dimension in excess of 106. In practice the analysis variables are 
scaled and remapped to balanced variables for which the background error 
covariance reduces to a computationally managable block diagonal form. 

These reduced covariances are estimated offline (see later)

The incremental approach is adopted where the comparison with observations is 
done at full resolution, but the minimization (and gradient calculations) at a 
reduced resolution.

The operator H (observation operator) for in-situ data is simply a spatial 
interpolation, but for radiance data includes the full radiative transfer operator.

Additional constraints Jc are imposed upon the solution by the inclusion of an 
additional cost function term to e.g. filter gravity waves.
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Implementation of 4DVAR
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Instead of finding a single 3D atmospheric state that represents
observations over a given time window (e.g. 6hrs), the 4DVAR 
searches for a time series or trajectory of atmospheric states that 
fits the observations at the time they were actually measured. 

We minimize the cost function through all times slots i :

Subject to the hard constraint that  the states follow the model equations

)(, 0 xxi ii →=∀ M
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Schematic representation of 4DVAR

Special characteristics of 4DVAR

• Better use is made of observations far from the centre of the 
assimilation time window (particularly important for satellite data)

•The inversion of the radiance data is constrained by the 
background and its covariance, but also by the constraint that 
radiance observations at different times force adjustments that are 
consistent with the forecast model physics and dynamics

•In fitting the radiances, the 4DVAR has the option of advecting 
warm (or moist) air and thus radiance data can cause wind 
adjustments during the assimilation
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Direct assimilation of radiances
By the direct assimilation of radiances we avoid the problem of 
assimilating retrievals with complicated error structures.

BUT

There are still a number of significant problems that must be handled

•The specification of the background error covariance

•The specification of the radiance error covariance

•Other ambiguities in the data

•Systematic radiance and RT error

Break
So much for the theory, what are the main issues …?
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Difficult to correct Easy to correct

Specifying the background error covariance
We can think of the radiance data “seeing” and correcting errors
in the background state during the data assimilation process.

Error standard deviation (K) Error standard deviation (K)

RETRIEVAL / ANALYSIS PERFORMANCE

Sharp / anti-correlated
background errors

Broad / deep correlated
background error

Small 
improvement
over 

background

Large  
improvement
over 

background
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ESTIMATING FORECAST ERROR CORRELATIONS

If the background errors are mis-specified in the retrieval / analysis 
this can lead to a complete mis-interpretation of the radiance information
and badly damage the analysis (indeed producing a analysis with larger
errors than the background state !) 

Thus accurate estimation of B is crucial:

•comparison with radiosondes (best 
estimate of truth but limited coverage

•comparison of e.g. 48hr and 24hr 
forecasts (so called NMC method)

•comparison of ensembles of analyses 
made using perturbed observations

Sharp errors
in tropics

Broad errors
in mid-lat

Sounding channels sensitive to the lower troposphere

By placing sounding channels in parts of the 
spectrum where the absorption is weak we 
obtain temperature (and humidity) information 
from the lower troposphere (low peaking 
weighting functions). 

BUT

These channels (obviously) become more 
sensitive to surface emission and the effects of 
cloud and precipitation.

In some cases surface or cloud contributions 
can dominate the atmospheric signal and it is 
difficult to use the data safely for temperature / 
humidity sounding.

K(z)
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OPTIONS FOR USING LOWER TROPOSPHERIC 
SOUNDING CHANNELS

• Screen the data carefully and only use 
situations for which the surface and cloud 
radiance contributions can be computed 
very accurately a priori (e.g. cloud free 
situations over sea). But meteorologically 
important areas are often cloudy!

•Simultaneously estimate atmospheric 
temperature, surface temperature / 
emissivity and cloud parameters within the 
analysis or retrieval process (need very 
good background statistics !) Can be 
dangerous.

Ptop

ne

AMSUA data usage 2001/11/10 pink=rejected blue=used

Clear and Cloudy
AIRS spectra

Characteristic
spectral patterns



ESA-ESRIN, Frascati, Rome, Italy

18th – 29th August 200327

What do we know about the 
cloud signal ?

• Over warm surfaces (non-frozen) it 
is always negative

•In band split / ranked channels it 
increases monotonically negative

•We can identify an “obviously” 
contaminated channel and step 
backwards with a digital filter to 
locate the first channel with 
discernable cloud contamination

•All channels ranked as higher 
peaking can safely be assimilated as 
clear

Clear channels Cloudy channels

SYSTEMATIC ERRORS

Systematic error must be removed 
before the assimilation otherwise biases 
will propogate in to the analysis. 

Sources of systematic error in radiance 
assimilation include

• instrument error (calibration)

•radiative transfer error (spectroscopy or 
RT model)

•cloud/rain screening errors

Mean corrected and uncorrected
(obs-fg) radiance departure

AMSUA for May 2001
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DIAGNOSING SYSTEMATIC ERRORS

Systematic errors in observations are usually identified by 
monitoring against the forecast background (or analysis) in the 
vicinity of constraining radiosonde data.  How do we know the 
source of the bias ?

HIRS channel 5 (peaking around 
600hPa on NOAA-14 satellite has
+2.0K radiance bias against model

HIRS channel 5 (peaking around 
600hPa on NOAA-16 satellite has 
no radiance bias against model.

DIAGNOSING SYSTEMATIC ERRORS

This time series shows
an apparent systematic 
error in AMSU channel
14 (peaking at 1hPa).  By
checking against other 
research data (HALOE and
LIDAR data) the bias was 
confirmed as a model bias
and the channel is now 
assimilated with no bias
correction

What if the model is wrong ?
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Analysis (+AIRS) minus OPS

OPS zonal mean temperature analysis
20030217 to 20030222

MIPAS retrievals (65-90S)
(20030217-20030222)
minus OPS analysis

MIPAS retrievals (65-90N)
(20030217-20030222)
minus OPS analysis

Diagnosing systematic errors with MIPAS temperature retrievals)

Feb 2003

Wind adjustments with radiance data

Radiances can influence the model wind field during the data 
assimilation process in a number of ways:

•Directly through the use of frequent cloud imagery

•Directly via surface emissivity (mostly microwave)

•Indirectly through model physics (humidity)

•Indirectly through passive tracing(humidity and ozone)

We must ensure that the adjustments from different data types
are consistent within the system (satellite vs in-situ)
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Indirect forcing of the wind field through model physics

Q > Q

Q>Q
By adding humidity to 
the lower troposphere or
removing moisture from
the upper troposphere the
satellite humidity information 
can cause large scale wind
adjustments !

Indirect forcing of the wind field by passive tracing

By observing humidity
or ozone signals in the
radiance data, the 4DVAR
can advect these fields 
to fit the radiances causing
wind adjustments.

This is particularly true with
high temporal density 
radiance from GEO satellites
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Review of key concepts (1)

•Satellite data are extremely important in NWP, even in areas
with a dense network of in-situ observations

•Data assimilation combines observations and a priori information
in an optimal way and is analogous to the retrieval inverse problem

•Modern data assimilation systems have largely moved to variational
approaches and use radiance observations directly (not retrievals)

Review of key concepts (2)

•The limited vertical resolution of satellite radiances makes the
specification of background error covariances crucial

•Systematic errors can be very harmful, particularly in 4D systems 
where they have a multivariate (wind) impact on the analysis

•Dealing with cloud and surface emission remains one of the most 
difficult areas of research.
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End of lecture

…next lecture…

Re-analysis
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Re-analysis at ECMWF
(similar to NCEP/DAO/NCAR)

• The principles and aims of re-analysis 

• The reality and practicalities of re-analysis

• Issues related to the use of satellite data

Annual running-mean forecast quality 
(verification against analyses)
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Operational vs ERA-40 system

For Operations:

Vertical resolution:

60 levels

25 levels above 100hPa

0.1hPa top

Horizontal resolution:

T159 (~125km)

Assimilation system:

6-hourly 3D-Var analysis

For ERA-40 (1957-2002): 

Vertical resolution:

60 levels

25 levels above 100hPa

0.1hPa top

Horizontal resolution:

T511 (~40km)

Assimilation system:

12-hourly 4D-Var analysis

In-situ (“conventional”) data 
for ERA-40

• Historic data from NCAR / NCEP
• ECMWF operational archive

• COADS

• Declassified US Navy data

• Additional AIREP and TEMP data from JMA

• FGGE and ALPEX Level-2b

• Data from field experiments  (GATE, etc...)

• Russian and Canadian snow data

• Special Arctic/Antarctic datasets

• Australian synthetic surface pressure observations
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Radiosonde coverage in October 1961

Radiosonde coverage in May 1997
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Satellite data for ERA-40

• NOAA VTPR radiances 1973 - 1978

• NOAA TOVS/ATOVS radiances 1978 - 2002

• SSM/I radiances 1987 - 2002

• ERS Scatterometer & Altimeter 1991 - 2002

• Cloud Motion Winds 1979 - 2002

JMA-GMS (1980 - 1993)
EUMETSAT Meteosat 2 reprocessing (1983 - 1988)

• TOMS/SBUV ozone retrievals 1978 - 2002

The ERA-40 Re-analysis used 41 satellite instruments 
carried by 15 different NOAA polar satellites

VTPR instrument 72-78 HIRS/MSU/SSU/AMSU instruments 78-02

source of data
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Issues related to the use of satellite 
data in re-analysis

To avoid any temporal inconsistencies related to changes in pre-processing by the 
data producer, ERA-40 used raw radiance measurements, but there are still some 
important issues:

•Instrument drift/shift over the lifetime of a satellite

•Absolute and inter-satellite calibration between different satellites

•Intermittent (sudden) disruptions / contamination of data (by nature)

•Changes to channel / instrument payload

•Events are often difficult to trap in time and must be fixed retrospectively

Parker & Alexander (2002)

VTPR bias 
correction bug

Trends in Global 70hPa temperature
(real and artificial)
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VTPR bias correction bug NOAA-3

1hPa temperature

200hPa temperature

Cosmic shower failure of MSU on NOAA-11

ERA-40

ERA-15

30hPa temperature

NOAA radiance data lost for two weeks

The systematic cooling 
of HIRS channel-10 
(8micron) caused an
erroneous moistening of 
the analysis and an 
increase in precipitation

The high level of 
moisture was persisted 
by the coincident 
introduction and tuning 
of data from NOAA-12

Changes in total column water vapour
(following the eruption of Pinatubo)
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Aerosol corruption of HIRS radiances following the eruption of 
Mt Pinatubo in ERA-40 reanalysis

Obs-FG radiance departures for 
HIRS channel 10 on NOAA-11

Obs-FG radiance departures for 
HIRS channel 10 on NOAA-12

Comparison with monthly-mean GPCP precipitation rates 
(1979-2001)

Europe North America ArcticNorth Atlantic

South-east Asia Tropical Africa Tropical America Equatorial Pacific

Spin-up problem 
in OPS too
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Stratospheric humidity

UARS
(Randel et al. 1998)

ERA-40

Representation of winds (e.g. QBO)

Singapore

(1N, 104EW)

10hPa

5hPa

ERA-15 did a 
bad job with a 
top level of 
10hPa
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ERA-40

TOMS

Trends in total column ozone 1991 to 1996

Summary
Re-analysis is an extremely expensive and difficult task to perform
well, in view of :

•Data problems (sensor, bias correction and contamination)

•System problems (model biases, assimilation limitations)

•Trade of between reality (NWP) and systematic signals (climate)

However the obvious value of re-analysis (and it future 
extension towards Earth system monitoring) ensures it will be 
done again and again until we get it right!


