ESA-ESRIN, Frascati, Rome, Iltaly

Data Assimilation
Summer School

Operational Satellites and Numerical
Weather Prediction

A. McNally

European Centre for Medium-range Weather Forecasts

Course on:

ENVISAT data assimilation summer school
(Frascati, August 2003)

Overview
« Key elements of an NWP system
— Forecast model
— Observations

— dataassimilation
o Satellite dataused in NWP
— sounding data
— surface (window) data
— activedata
e Dataassimilation systems
— optimal interpolation (retrievals)
— Variational (3D/4D) methods (direct radiance assimilation)
e Radiance assimilation issues
— background error covariances
— systematic error
— treatment of cloud and the surface
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ECMWE:

A European organisation with headquarters in the UK

Established by Convention in force from November 1975

Principal objectives:

— development of methods for forecasting weather beyond two days ahead

Staff of about 200

collection and storage of appropriate meteorological data

daily production and distribution of forecasts to the Member States
provision of archival/retrieval facilities to the Member States
provision of computational resources to the Member States

4

Member States:
Belgium
Denmark
Germany
Spain
France
Greece
Ireland
Italy
The Netherlands

Norway

Austria

Portugal
Switzerland
Finland
Sweden

Turkey

United Kingdom

Co-operation agreements with:

Croatia
Czech Republic

Iceland

Hungary
Slovenia
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ECMWEF activities

» Medium-range forecasts of the state of the atmosphere,
land and ocean-wavesto ten days ahead

— Deterministic (single high-resolution forecast)
— Probabilistic (ensemble of perturbed lower-resolution
forecasts)

 Boundary conditions (initial conditions) for Member States
short-range regional forecasting systems

» Seasonal forecasts (including ocean circulation) to six
months ahead

* Re-analysesof historical observations (for climate
applications)

Key elements of an Numerical
Weather Prediction (NWP) system

» The forecast model time evolves fields of geophysical
parameters (e.g. T/Q/U/V/Oy) following the laws of
thermodynamics and chemistry

* Theinitial conditions used to start the for ecast model are
provided by the analysis

» The analysis is generated from obser vations relating to
the geophysical parameters combined with a priori
background information (usualy a short-range forecast
from the previous analysis).

*This combination process is known as data assimilation
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Atmosphere

The ECMWEF forecast model (1)

Vertical resolution

60 hybrid sigma
levels

01 * ' 1

Horizontal resolution

T,511~40km L : |
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12 levels below 850 hPa

The ECMWF forecast modd (2)

WIND WAVES

DCEAN MODEL
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The Data Assimilation Process

Forecast trajectory

/‘E—W“”"’“""' ciaial
T : nahyais i

L 1 1 | 1 H
12UuTC 18 UTC ouTe GUTC 12 UTC i

In situ (conventional

Observations Used in NWP

Remotely sensed (satellite)

SYNOP(surface) » Polar orhiting platforms
— Ps, Wind-10m, RH-2m — HIRS(x3)

AIREP - MU

— Wind, Temp — AMSU-A /B (x4)
DRIBU(drifting buoy) -

— Ps, Wind-10m - SSMII(S) (x3)
TEMP(balloon)) — QuickScat

— Wind, Temp, Spec Humidity - ERSscat
DROPSONDE . G_eo':tlf:iinar latforms
— Wind, Temp - METEO%/API' (517)
PILOT/ProﬂIer — GOES (EIW)

- Wind — GMS

PAOB

- Ps
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Coverage of in-situ measurements

ECM'WF Data Coverage - BYHOPSHIP [ECMWF Dala Coverage - BUODY
OEHOV2000; 12 UTC NEHOVZ00D; 12 UTC
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The importance of satellite data

The limited coverage of in-situ observations means
that satellite data are extremely important for global
numerical weather prediction, particularly in the
medium-range

Improvements in the quality of satellite observations and the
techniques devel oped to assimilate the data have resulted in
satellites now being of equal or greater importancethan
radiosonde obser vations even in data dense regions of the
Northern Hemisphere

Impact of withdrawing different types of
observations on forecast quality

Anomaly correlation of 500hPa height for Southern Hemisphere

100% 1

90% 1

80% 1

Control

70%
0% B No sondes

60% 1 [l No satellite

50% 1

40%-

Day 3 Day 5 Day 7
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Impact of withdrawing different types of
observations on forecast quality

Anomaly correlation of 500hPa height for Northern Hemisphere

100%

90% -

80% -

Bl Control

70%

B No sondes

B No satellite

60% +

50%

40% -

Day 3 Day 5 Day 7

Evolution of forecast skill

Anomaly correlation of 500hPa height forecasts

Mortharn hamspham —————— Eo shwen hamisphem
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Break

So satellite data are very important... what do they measure

What do the satellite instruments measur e?

They DO NOT measure TEMPERATURE
They DO NOT measure HUMIDITY
They DO NOT measure WIND

Satellite instruments (active and passive) simply measure the radiance L that
reaches the top of the atmosphere at frequency @. The measured radianceis
related to geophysical atmospheric variables by the radiative transfer equation
(covered in previous lectures).

L(n) — Q B(n T(Z)) t (n )? Surface Surfact_a + Surfacg + Clouc_ilrai_n

8 + emission T reflection T scatteri ng contribution
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FREQUENCY SELECTION

By selecting radiation at different frequenciesor CHANNEL S a satellite
instrument can provide information on arange of geophysical variables.

In general the channels used within NWP may be considered as one of 3
different types

» Atmospheric sounding channels (passive instruments)

« Surface sensing channels (passive instruments)

« Surface sensing channels (active instruments)

In practice (and often despite their name) real satellite instruments have
channels which are a combination of atmospheric sounding and surface sensing

ATMOSPHERIC SOUNDING CHANNELS

These channels are located in parts of the infra-red and microwave spectrum for which the
main contribution to the measured radiance is described by:

L) =) BO ,T(z))gdtd(zn)&jz

That is they avoid frequencies for which surface radiation and cloud contributions are important.
They are primarily used to obtain information about atmospheric temperature and humidity.
AMSUA-channel 5 (53GHz) HIRS-channel 12 (6.7micron)

S e e ww em ww aw r
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SURFACE SENSING CHANNELS (PASSIVE)

These are located in window regions of the infrarred and microwave spectrum at frequencies
where there is very little interaction with the atmosphere and the main contribution

to the measured radianceis:

L() = Surface emission [ Tar , &(U,V) ]

These are primarily used to obtain information on the surface temperatureand quantities that
influence the surface emissivity such as wind (ocean) and vegetation (land). They can aso be
used to obtain information on clouds/rain and cloud movements (to provide wind information)

HIRS channel 8 (11microns)

e B el § B B e

AENETENED

-

| ERERERE

ACTIVE INSTRUMENTS

These (e.g. scatterometers) illuminate the surface in window parts of the spectrum such that
L(h)= Surface scattering [ €(u,v) |

These primarily provide information on ocean winds (via emissivity) without T sut ambiguity

Quick-scat

TRAL W Wiy b 18 14k 00 500 ey [ —
Lo odhow m o omomom
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ATMOSPHERIC TEMPERATURE SOUNDING

If radiation is selected in a sounding channel for which

¥ édt () u

L(n):({;)B(n,T(z))8 = I;FZ

édt u

§dzH

And we define afunction K(z) =

If the primary absorber isawell mixed gas (e.g. oxygen or CO2)
it can be seen that the measured radiance is essentially a weighted
aver age of the atmospheric temperature profile, or

¥
~\

L() = Q BO.T(2)K(2)dz

The function K(2) that defines this vertical average is known asa
WEIGHTING FUNCTION

IDEAL WEIGHTING FUNCTIONS

b,

If the weighting function was a
delta-function, this would mean that
7 e the measured radiance is sensitive
to the temperature at asingle level
in the atmosphere.
K(2)

If the weighting function was a
box-car function, this would mean
z that the measured radiance was
senditive to the mean temperature
between two atmospheric levels

K(2)

12
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REAL ATMOSPHERIC WEIGHTING FUNCTIONS

ﬂ N

High in the atmosphere very
little radiation is emitted, but
most will reach the top of the
atmosphere

At some level thereisan | [
optimal balance between the |
amount of radiation emitted Pl f
and the amount reaching the

top of the atmosphere

—— i’ >

A lot of radiation is emitted from the K(Z)
dense lower atmosphere, but very

little survivesto the top of the

atmosphere due to absorption.

REAL WEIGHTING FUNCTIONS continued...

* The altitude at which the peak of the
weighting function occurs depends on the
strength of absorption for a given channel

eChannels in parts of the spectrum wherethe = «}
absorption is strong (e.g. near the centre of £
CO2 or O2 lines) peak high inthe i
atmosphere o

*Channelsin parts of the spectrum where the

absorption iswesak (e.g. in the wings of CO2 N AMSUA

02 lines) peak low in the atmosphere Lo .
By selecting a number of channelswith varying absor ption strengths
we sample the atmospheric temperature at different altitudes
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HIRS AMSUA
: J_
\ :
: Ch-14 |
| chl T rChas
{ . iCh-12
ch11 :
| Ch-2 :
I. 1
:: ) 1
L - L -
- S o
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Break

So we know what satellites measure, how do they fit in to NWP..?

14
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The data assimilation problem (1)

Bi:kground informati Egn

Tk b i =

Observations

Initial conditions
for next forecast "

Analysis

The data assimilation problem (2)

The analysisis an optimal combination of a priori
background information and new observed data.

Itisoptimal in that it isthe Maximum Liklehood solution
and respects the uncertainty in both sources of information

Using Bayes theory the analysis becomes the state of the
atmosphere that minimizesa COST or PENALTY
FUNCTION

It iscompletely analogousto the inver se problem solved
for satelliteretrievals
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The data assimilation problem (3)
The COST function

Vector containing
all observed data

Observation
error covariance

|
3(x) = (x- %) B (x- x0) +(y- H[X))"R*(y- H[X])

VN e

0 Background error atmospheric state
Multivariate 3 or 4 covariance to observation space
dimensional state of

the atmosphere
(background estimate
shown with subscript b

The data assimilation problem (4)

In the past linear (one-step) implementations of Optimal
Interpolation (Ol) have been used to produce the analysis

Xa=BHT[HBH™ +R] *(y - H[X])

Apart from the need to divide the globe in to small boxes (to
reduce the dimensionality of the problem) another limitation of
this approach was that the observations had to be linearly related
to the analysis variables (T/Q/U/V)

Thiswas fine for in-situ data (e.g. radiosondes)

But satellite radiance data had to be converted to retrievals of
(T/Q) before being supplied to the assimilation system ...
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EXTRACTING ATMOSPHERIC
TEMPERATURE FROM RADIANCE
MEASUREMENTS

If we know the entire atmospheric temperature profile T(z)
then we can compute (uniquely) the radiances a sounding

instrument would measure using the radiative transfer il

equation. This is sometimes known as the forward L

problem

In order to extract or retrieve the atmospheric temperature il

profile from a set of measured radiances we must solve what Wl ]

is known as theinverse problem

Unfortunately with a finite number of channels and

weighting functions that are generally broad, the inverse Wi
problem isformallyill-posed (an infinite number of

different temperature profiles could give the same ]
measured radiances)

See paper by Rodgers 1976 Retrieval of atmospheric temperature and composition from remote
measurements of thermal radiation. Rev. Geophys.Space. Phys. 14, 609-624

RETRIEVAL ALGORITHMS

Three different types of retrieval have been used in NWP:
*Exact or least squares solutions to reduced inverse problems

*Regression (statistical / library search / neural net) methods

*Forecast background methods

The retrieval schemes differ in the way prior informationis used
to supplement the information of the measured radiances and
solve the inverse problem !
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1. Solutions to reduced inverse problems

We acknowledge that there is a limited amount of information in the measured radiances and re-formulate
the ill-posed inverse problem in terms of a reduced number of unknown variablesthat can be better
estimated by the data

e.g. Deep mean layer temperatures, Total Column Water / Ozone or EOF’s (eigenfunctions)

Unfortunately it is difficult to objectively quantify the error in these quantities (which is very important to
use the retrieval in NWP) due to the sometimes subjective choice of reduced representation.

2. Regression and Library search methods

Using a sample of temperature profiles matched (collocated) with a sample of radiance
observations/simulations, a statistical relationship is derived that predicts e.g atmospheric temperature from
the measured radiance.

e.g. NESDIS operational retrievals or the 3| approach

These tend to be limited by the statistical characteristics of the training sample / profile library and will not
produce physically important featuresif they are statistically rare in the training sample. Furthermore,
their assimilation can destroy sharp physical features in the analysis!

3. Forecast Background or 1IDVAR Methods

These use an explicit background or first-guess profile from a short range forecast and perform
optimal adjustments using the measured radiances. The adjustments minimize a cost function

Forecast Background Retrievals

We formulate a 1D cost function (analogous to the 3D/4D cost
function defined for the analysis

3() = (x- %)' B (x- x) +(y- HIX)R™(y- HIX)

/ | /

1D profiles of Vectorgcfi Radiative
T/Q/03 measur transfer
radiances
operator

And minimize with asingle step solution

(if chamels / data are selected to avoid

nonlinear effects

%a=BHT[HBH T +R]*(y- H[xs]) Or iteratetowardgasolution if H
incorporates nonlinear effects (e.g.cloud)

X+1 =X+ WH Y- H(X)- H(6) (06~ X%0)]
Wh=BH)) [H(6)BHX)' +R]™

OR
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Forecast Background Retrievals

These have anumber of advantages that make them mor e suitable for NWP than
other methods

*The prior information (short-range forecast) is very accurate (more than statistical
climatology) which improves retrieval accuracy.

*The prior information contains information about physically important features
such as fronts, inversions and the tropopause.

*The error covariance of the prior information and resulting retrieval is better
known (crucial for the subsequent assimilation process).

*Theretrieval may be considered an intermediate step towards the direct
assimilation of radiances (no external sources of prior information)

BUT theerror characteristics of the retrieval may be complicated
duetoits correlation with the forecast background (used twice!)

Assimilation of satelliteretrievals
in NWP

Whatever approach is adopted to convert radiance measurements to
temperature, humidity etc... The use of satelliteretrievalsis problematic for
two main reasons:

1) They retain characteristics of the a priori information that are very
difficult to remove.

2) They generally have complicated error structuresthat are difficult to
model in the subsequent assimilation (e.g. strong correlations between levels
and variables)

For these reasons the use of retrievalsin global NWP has generdly
been superceded by the dir ect assimilation of radiance data.
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End of lecture

...hext lecture...

Radiance assimilation

Direct assimilation of radiancesin NWP

Variational analysis methodssuch as 3DVAR and 4DV AR allow the direct
assimilation of radiance observations (without the need for and explicit retrieval
step).

Thisis because such methods do NOT require alinear relationship between the
observed quantity (radiance) and the analysis variables (T/Q..)

Theretrieval (or inversion) is essentially incorporated within the main analysis
by finding the 3D or 4D state of the atmosphere that minimizes the cost function

The forecast background still provides the prior information to supplement the
radiances, but the inversion is further constrained by the simultaneous
assimilation of other observations.

The cost function is minimized by iteration using efficient adjoint techniques
but the processis still expensive and requires super-computers
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|mplementation of 3DVAR

J(x) = (- %) B (x- %) +(y- H[X])' R™(y- H[X])+Jc

The vector x isafull global 3D vector describing the state of the atmosphere
and has adimension in excess of 108. In practice the analysis variables are
scaled and remapped to balanced variables for which the background error
covariance reduces to a computationally managable block diagonal form.

These reduced covariances are estimated offline (see later)
Theincremental approach is adopted where the comparison with observations is
done at full resolution, but the minimization (and gradient calaulations) at a

reduced resolution.

The operator H (observation operator) for in-situ datais ssimply a spatial
interpolation, but for radiance data includes the full radiative transfer operator.

Additional constraints Jc are imposed upon the solution by the inclusion of an
additional cost function term to e.g. filter gravity waves.

|mplementation of 4ADVAR

Instead of finding asingle 3D atmospheric state that represents

observations over agiven time window (e.g. 6hrs), the ADVAR
searches for atime series or trajectory of atmospheric states that
fits the observations at the time they were actually measured.

We minimize the cost function through all times dotsi :
J(X) = (X- %) B (X~ %)

+@, (v~ HIXD'R™(y- HIx])
+Jc

"1,% =Moe i(X)

Subject to the hard constraint that the states follow the model equations

21
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Schematic representation of ADVAR

e

JI'.'-‘
. .
L~ analysis
Iy ) .-
_.I'-.I' HI ..Ii
I ‘ -.—ZZZ
Fan oo
.'\-'-I-
b
% I f
| . |

32 ¥4 92 12z 152 lime

assimilation window

Special characteristics of ADVAR

* Better use is made of observations far from the centre of the
assimilation time window (particularly important for satellite data)

*The inversion of the radiance data is constrained by the
background and its covariance, but also by the constraint that
radiance observations at different times force adjustments that are
consistent with the forecast model physics and dynamics

*In fitting the radiances, the 4DV AR has the option of advecting
warm (or moist) air and thus radiance data can cause wind
adjustments during the assimilation
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Direct assimilation of radiances

By the direct assimilation of radiances we avoid the problem of
assimilating retrievals with complicated error structures.

BUT

There are till anumber of significant problems that must be handled
*The specification of the background error covariance

*The specification of the radiance error covariance

*Other ambiguities in the data

*Systematic radiance and RT error

Break

So much for the theory, what are the main issues ...?
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Specifying the background error covariance

We can think of the radiance data“seeing” and correcting errors
in the background state during the data assi milation process.

1]

Difficult to correct Easy to correct

RETRIEVAL / ANALYSISPERFORMANCE

Sharp / anti-correlated Broad / deep correlated
background errors background error

Large
improvement
over

1| Small
improvement
{ over

kground

Error standard deviation (K) Error standard deviation (K)
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ESTIMATING FORECAST ERROR CORRELATIONS

If the background errorsare misspecified in theretrieval / analysis
this can lead to a complete mis-interpretation of the radiance information
and badly damage the analysis (indeed producing a analysis with lar ger
errors than the background state !)

Sharp errors

Thus accurate estimation of B is crucidl: ; :
n tropl CS

scomparison with radiosondes (best
estimate of truth but limited coverage

scomparison of e.g. 48hr and 24hr | \ ==
forecasts (so called NMC method) ; \
scomparison of ensembles of analyses

made using perturbed observations Broad errors

in mid-lat

Sounding channels sensitive to the lower troposphere

By placing sounding channels in parts of the
spectrum where the absorption is weak we
obtain temperature (and humidity) information
from the lower troposphere (low peaking
weighting functions).

BUT
1
These channels (obviously) become more /
sensitive to surface emission and the effects of
cloud and precipitation. |
K®)

In some cases surface or cloud contributions
can dominate the atmospheric signal and it is
difficult to use the data safely for temperature /
humidity sounding.
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OPTIONSFOR USING LOWER TROPOSPHERIC
SOUNDING CHANNELS

AMSUA data

usage 2001/11/10 pink=rejected blue=used

Bodml-d s a=B - E-d =i
- N

* Screen the data carefully and only use
situations for which the surface and cloud
radiance contributions can be computed
very accurately a priori (e.g. cloud free
situations over sea). But meteorologically
important areas are often cloudy!

VaSRANNA a0 aBF140

IERRERREERE]

*Simultaneously estimate atmospheric
temperature, surface temperature /
emissivity and cloud parameters within the
analysis or retrieval process (need very
good background statistics!) Can be
dangerous. .

Prop

o el iy M sl il s R e
[Er -

veayanglh (micrans)

EEEEENATERRISSSERERENQEEIRIRIEER R IR
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* Over warm surfaces (non-frozen) it
isaways negative .

*In band split / ranked channelsit
increases monotonically negative

What do we know about the
cloud signal ?

LW hand, OB # 28D

clear

oAl a
*We canidentify an “obviously” "
contaminated channel and step i
backwards with a digital filter to 2 “‘-TIH
locate the first channel with
discernable cloud contamination -
A,

'*_.... Pl NS P L
*All channels ranked as higher 0 10 ] 30 0 50
peaking can safely be assimilated as h "

Clear channels Cloudy channels

SYSTEMATIC ERRORS

Systematic error must be removed
before the assimilation otherwise biases
will propogate in to the analysis.

Sources of systematic error in radiance
assmilation include

* instrument error (calibration)

eradiative transfer error (spectroscopy or
RT model)

ecloud/rain screening errors

Mean corrected and uncorrected
(obsfg) radiance departure

B e ARy

aai A e

Adii===

AE? T ] lun135 RSP S
T Mé——-—

]

AMSUA for May 2001
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DIAGNOSING SYSTEMATIC ERRORS

Systematic errorsin observations are usually identified by
monitoring against the forecast background (or analysis) in the

vicinity of constraining radiosonde data. How do we know the
sour ce of the bias?

e

HIRS channel 5 (peaking around
] 600hPa on NOAA -14 satellite has
=== +2.0K radiance bias agal nst model

T T T T T T T T T T T T 1T
AZZPAZEZENZ 4 & S10121 41681820

APR

HIRS channel 5 (peaking around
600hPa on NOAA -16 satellite has
no radiance bias against model.

T 1T
o2 4181820

jous
5 [T M———
o=

DIAGNOSING SYSTEMATIC ERRORS
What if the model iswrong ?

This time series shows sl sl

an apparent systematic TTH vy

error in AMSU channel REPSY | AN rf

14 (peaking at 1hPa). By sl . N ML 1rl;":l

checking against other § e

research data (HALOE and | 4/~ primmE ;

LIDAR data) the biaswas | | AT

confirmed as a model bias CENREEREN I3

and the channel is now — o)

assimilated with no bias P 50 0 11 5 P ) 5 O A Y 5 5
. ) ETE A1 RiEEERAIARN

correction
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Diagnosing systematic errorswith MIPAS temperatureretrievals)

MIPAS retrievals (65-90S)
(20030217-20030222)
minus OPS analysis

MIPAS retrievals (65-90N)
(20030217-20030222)
minus OPS analysis

.1 OPS zonal mean temperatureanalysis i
: 20030217 to 20030222

Freswurs in WPs \
. J LR e 2 T

Wind adjustments with radiance data

Radiances can influence the model wind field during the data
assimilation process in a number of ways:

Directly through the use of frequent cloud imagery
*Directly viasurface emissivity (mostly microwave)
eIndirectly through model physics (humidity)

eIndirectly through passive tracing(humidity and ozone)

We must ensurethat the adjustments from different data types
are consistent within the system (satellite vsin-situ)
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I ndirect forcing of thewind field through model physics

Q>Q

By adding humidity to

the lower troposphere or
removing moisture from

the upper troposphere the
satellite humidity information
can cause large scalewind
"1 adjustments !

Q>Q

I ndirect forcing of thewind field by passive tracing

By observing humidity i foe g L
or ozone signalsin the - 2 = T : =
radiance data, the ADVAR = 12 e ="
can advect these fields P = N Y e o
to fit the radiances causing - Capas s i T e ';,
wind adjustments. A e Bt L S S S e 1
Thisis particularly truewith

high temporal density S

radiance from GEO satellites =~ &

............
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Review of key concepts (1)

«Satellite data are extremely important in NWP, even in areas
with a dense network of in-situ observations

«Data assimilation combines observations and a priori information
in an optimal way and is analogous to the retrieval inverse problem

*Modern data assimilation systems have largely moved to variational
approaches and use radiance observations directly (not retrievals)

Review of key concepts (2)

*The limited vertical resolution of satellite radiances makes the
specification of background error covariances crucial

«Systematic errors can be very harmful, particularly in 4D systems
where they have a multivariate (wind) impact on the analysis

*Dealing with cloud and surface emission remains one of the most
difficult areas of research.
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Suggested reading

Andersson E., Thepaut J.N., Eyre JR., McNally A.P., Kelly G., Courtier P., and PailleauxJ., 1994: Use of cloud cleared radiancesin
three/four dimensional variational dataassimilation. Q.J.R. Meteorol. Soc., 120, pp. 627-653.

Daley, R. 1991 Atmospheric Data Analysis. Cambridge University Press

Eyre JR., Kelly G., McNally A.P., Andersson E., and Persson A., Assimilation of TOVS
radiances through one-dimensional variational analysis. Q.J.R. Meteorol. Soc. (1993), 119,pp.1427-1463

Le DimetF., and Talagrand O., 1986: Variational algorithms for analysis and assimilation
of meteorological observations. Tellus, 37A, 97-110.

Lorenc A.C., 1981: A global three-dimensional multivariate statistical interpolation
scheme. Mon. Wea. Rev., 109, 701-721.

McNally A.P. 2000: Estimates of short-range forecast temperature error correlations and theimplications for radiance data assimilation.
Q.J.R. Meteorol. Soc. 126 pp 361-373.

Parrish, D.F., Derber, J.C. 1992 The National Meteorological Center's Spectral Statistical
Interpolation Analysis system. Mon. Weather Rev. 120, 1747-1763

Rabier F., A. McNally, E. Andersson, P. Courtier, P. Unden, J. Eyre, A. Hollingsworth andF. Bouttier 1998 . The ECMWF implementation
of three-dimensional variational assimilation

(3D-Var) Il Structure functions. Q.J.R. Meteorol. Soc. 124 part B, pp 1809..

Rodgers C.D., 1976: Retrieval of Atmospheric Temperature and Composition From
Remote measurements
of Thermal Radiation. Rev. Geophys. and Space Phys., 14, 609-624.

End of lecture
...hext lecture...

Re-analysis
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Re-analysisat ECMWF
(smilar to NCEP/DAO/NCAR)

- The principles and aims of re-analysis
» Theredlity and practicalities of re-analysis

* |ssuesrelated to the use of satellite data

Annual running-mean forecast quality
(verification against analyses)

Standard deviation of 50hPa vector wind error (m/s)  Morthern Hemisphere

— D+10ps ——-—- D#30ps ---- D450ps ———-D+1 ERA-40
12

104,

B2 B3 B4 85 80 67 88 B9 90 M 92939495959?969905010203I
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Operational vs ERA-40 system
For ERA-40 (1957-2002): For Operations:
Vertical resolution: Vertical resolution:
60 levels 60 levels
25 levels above 100hPa 25 levels above 100hPa
0.1hPatop 0.1hPatop
Horizontal resolution: Horizontal resolution:
T511 (~40km) T159 (~125km)
Assimilation system: Assimilation system:
12-hourly 4D-Var analysis 6-hourly 3D-Var analysis

In-situ (“conventional”) data
for ERA-40

» Historicdatafrom NCAR /NCEP
« ECMWF operational archive

+ COADS

* Declassified USNavy data

+ Additional AIREP and TEMP datafrom JIMA

¢ FGGE and ALPEX Level-2b

» Datafrom field experiments (GATE, etc...)

* Russian and Canadian snow data

e Special Arctic/Antarctic datasets

* Australian syntheticsurfacepressureobservations
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Radiosonde coverage in October 1961

' Tot.?l number_ of ol_os =669 .
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Radiosonde coverage in May 1997
_Total number of obs =564
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Satellite datafor ERA-40

NOAA VTPR radiances 1973-1978
NOAA TOVS/ATOVSradiances 1978 - 2002
SSM/I radiances 1987 - 2002
ERS Scatterometer & Altimeter 1991 - 2002
Cloud Motion Winds 1979 - 2002

JMA-GMS
EUMETSAT Meteosat 2 reprocessing

TOMS/SBUYV ozoneretrievals

(1980 - 1993)
(1983 - 1988)

1978 - 2002

The ERA-40 Re-analysis used 41 satellite instruments

carried by 15 different NOAA polar satellites

VTPR instrument 72-78

HIRS/MSU/SSU/AMSU instruments 78-02
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| ssues related to the use of satellite

datain re-anaysis

To avoid any temporal inconsistencies related to changesin pre-processing by the
data producer, ERA-40 used raw radiance measurements, but there are still some
important issues:

eInstrument drift/shift over the lifetime of a satellite

*Absolute and inter-satellite calibration between different satellites

Intermittent (sudden) disruptions/ contamination of data (by nature)

*Changes to channel / instrument payload

*Events are often difficult totrap in time and must be fixed retrospectively

il

5

b

&

Trendsin Global 70hPatemperature
(real and artificial)
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correction bug
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s- VTPR bias correction bug NOAA-3

A s A e

i 1hPatemperature
T R B B 0 B0 A BE 6 67 60 BB TB T T2 TI T J;'J&'ﬂ‘?a\}e'mh'm 8 B B B6 AT 3 69 00 91 32 01 fd 66 697 89 09 00) 01 02
-r

HEq R
Hal " i, e .
we BT MR, ot W ERA-40

3 - e

:j Cosmic shower failure of MSU on NOAA—11/v

NOAA radiance data lost for two weeks

30hPa temperature

Changes in total column water vapour
(following the eruption of Pinatubo)

Tropicsl-rean TEWY naement (Mg i)

The systematic cooling
of HIRS channel-10
(8micron) caused an
€erroneous moistening of
theanalysisand an

. . . . ¥
increasein precipitation \ o
Trplesl-rrsan prasip (meniay|

= 7 me | owen | tmn | e ' owes | el | s |t

Thehigh level of ) y
moisture was per sisted S o
by the coincident

introduction and tuning

of data from NOAA-12 [T —
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Mt Pinatubo in ERA-40 reanalysis

l .

Aerosol corruption of HIRS radiances following the eruption of

3
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Comparison with monthly-mean GPCP precipitation rates
(1979-2001)
Europe North America North Atlantic Arctic
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Stratospheric humidity
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Trends in total column ozone 1991 to 1996
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Summary

Re-analysisis an extremely expensive and difficult task to perform
well, in view of :

*Data problems (sensor, bias correction and contamination)
*System problems (model biases, assimilation limitations)

*Trade of between reality (NWP) and systematic signals (climate)
However the obviousvalue of re-analysis (and it future

extension towards Earth system monitoring) ensuresit will be
done again and again until we get it right!
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