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What is data assimilation?

Data assimilation is the 
technique whereby 
observational data are 
combined with output from a 
numerical model to produce an 
optimal estimate of the evolving 
state of the system.
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Why We Need Data Assimilation

• range of observations
• range of techniques
• different errors
• data gaps
• quantities not measured
• quantities linked
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Some Uses of 
Data Assimilation

• Operational weather and ocean 
forecasting

• Seasonal weather forecasting
• Land-surface process
• Global climate datasets
• Planning satellite measurements
• Evaluation of models  and 

observations
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What We Want To Know
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What We Also Want To Know

Errors in models

Errors in observations

What observations to make
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Numerical 
ModelDAS

DATA ASSIMILATION SYSTEM
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The Data Assimilation Process

observations forecasts

estimates of state & parameters

compare 
reject 
adjust

errors in obs. & forecasts 
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Retrievals and Assimilation

• Problems with retrievals
– a priori state and poorly known errors

• Problems with assimilation of 
radiance
– systematic errors and cloud clearing
– expensive (multi-channels)

• Need effective interface
– Information content with error analysis
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Statistical Approach to 
Data Assimilation
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Minimum Variance 

Combination of Data 

Unbiased, Uncorrelated Errors
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Variational Method
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Maximum Likelihood 
Estimate

• Obtain or assume probability distributions 
for the errors 

• The best estimate of the state is chosen to 
have the greatest probability, or maximum 
likelihood

• If errors normally distributed,unbiased 
and uncorrelated, then states estimated by 
minimum variance and maximum 
likelihood are the same
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Multivariate Case
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Variance becomes 
Covariance Matrix

• Errors in xi are often correlated
– spatial structure in flow
– dynamical or chemical relationships

• Variance for scalar case becomes 
Covariance Matrix for vector case COV

• Diagonal elements are the variances of xi

• Off-diagonal elements are covariances 
between xi and xj

• Observation of xi affects estimate of xj
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Estimating Covariance 
Matrix for Observations, O

• O usually quite simple: 
– diagonal or 
– for nadir-sounding satellites, non-zero 

values between points in vertical only 

• Calibration against independent 
measurements
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Estimating Covariance 
Matrix for Model, B

• Use simple analytical functions 
constructed experimentally, e.g.

• Run ensemble of forecasts from slightly 
different conditions and analyse error 
growth.
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Methods of Data 
Assimilation

• Optimal interpolation (or approx. to it) 

• 3D variational method (3DVar)

• 4D variational method (4DVar)

• Kalman filter (with approximations)
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Optimal Interpolation

))(( bba xyKxx H−+=

“analysis”

“background” 
(forecast)

observation

1OHBHBHK −+= )( TT

• linearity H H

• matrix inverse

• limited area

observation 
operator



ESA-ESRIN, Frascati, Rome, Italy

18th – 29th August 200313

D A R C

∆

∆

∆

∆

∆

∆
∆

∆

)( bxy H−=∆ at obs. point

bx

data void

D A R C

X

t

observation

model 
trajectory



ESA-ESRIN, Frascati, Rome, Italy

18th – 29th August 200314

D A R C

Data Assimilation:
an analogy

Driving with your eyes closed: 

open eyes every 10 seconds 
and correct trajectory
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Variational Data Assimilation

)(xJ

x

vary  
to minimise

x

)(xJ

ax



ESA-ESRIN, Frascati, Rome, Italy

18th – 29th August 200315

D A R C

))(())((

)()(

)(

1

1

xyOxy

xxBxx

x

HH

J

T

b
T

b

−−

+−−

=

−

−

Variational Data Assimilation

nonlinear operator 
assimilate y directly 
global analysis
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Choice of State Variables 
and Preconditioning

• Free to choose which variables to use 
to define state vector, x(t)

• We’d like to make B diagonal
– may not know covariances very well 
– want to make the minimization of J more 

efficient by “preconditioning”: 
transforming variables to make surfaces 
of constant J nearly spherical in state 
space
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Cost Function for Correlated Errors
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Cost Function for 

Uncorrelated Errors
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Cost Function for 
Uncorrelated Errors            

Scaled Variables
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4D Variational Data Assimilation

given X(to), the 
forecast is 
deterministic

vary X(to) for best fit to data
to t

obs. & 
errors
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4D Variational Data Assimilation

• Advantages
– consistent with the governing eqs.

– implicit links between variables

• Disadvantages
– very expensive
– model is strong constraint
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Problem

model error 
covariances
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Kalman Filter
(expensive)

Use model equations to                
propagate B forward in time.

B        B(t) KAL

Analysis step as in OI
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What are the benefits of 
data assimilation?

• Quality control

• Combination of data
• Errors in data and in model

• Filling in data poor regions

• Designing observational systems
• Maintaining consistency

• Estimating unobserved quantities
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Some Applications of 
Data Assimilation
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Skill Measures: 
Observation Increment, (O-F)

• The difference 
between the  forecast 
from the first guess, F, 
and the observations, 
O, also known as  
observed-minus-
background 
differences or the 
innovation vector. 

• This is probably the 
best measure of 
forecast  skill.
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ECMWF

Ozone
monthly-
mean 
analysis 
increment.

Sept. 1986
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Best observations to make to characterize the chemical 
system
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Impact on NWP at the Met Office

Mar 99. 3D-Var
and ATOVS

Jul 99. ATOVS over Siberia, 
sea-ice from SSM/I

Oct 99. ATOVS as radiances, 
SSM/I winds

May 00. Retune 
3D-Var

Feb/Apr 01. 2nd satellites, 
ATOVS + SSM/I
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Impact of satellite data in NWP

D A R CD A R C

Future Advanced Infrared Sounders
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IASI vs HIRS
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MERIS ocean colour
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Regional Scale: Regional Scale: WWalnut alnut GGulch (Monsoon 90)ulch (Monsoon 90)

Model

Model with 4DDA

Observation

Tombstone, AZ

0% 20%

Houser et al., 1998
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Land InitializationLand Initialization: : MotivationMotivation

• Knowledge of soil moisture has a greater impact on the predictability of summertime precipitation 
over land at mid-latitudes than Sea Surface Temperature (SST). 
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Conclusions

• Data assimilation should be essential 
part of “ground-segment” of all 
satellite missions.

• Aim should be to provide all data in 
“near real time”.

• Need to find optimal ways to 
assimilate data – efficient interfaces. 

• Challenges: errors, resolution, data.
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