

	Overview	
•	What is described by chemistry transport	
	models?	
•	Types of models	
•	Time scales	
•	Time splitting	
•	Chemical solvers	
•	Synoptic transport	
•	Convective transport	
•	Boundary layer	100
•	Deposition	
•	Validation against observations	

Koninklijk Nederlands Meteorologisch Instituut

Types of models: on-line versus off-line

• Chemistry General Circulation Models (CGCMs): calculate both meteorology (dynamics, temperature, radiation, ..) and chemistrytransport i.e. on-line

Require much processing computer power

 Chemistry-transport models (CTMs): use archived meteorological fields from GCMs or weather forecast models i.e. off-line Require much storage space for input files Some parameterisations need to be rerun (convection, boundary layer turbulence)
 Do not allow studies of chemistry-climate coupling but are generally computationally cheaper than GCMs

Time scales of transport proces		ر م
Stratospheric transport (Brewer-Dobson circulation)	1-10 years	ninklijk
Interhemispheric transport	1-2 years	Nec
Polar vortex, tropical pipe (stratosphere)	3-6 months	e la
Subtropical, mid-latitude, polar fronts (troposphere)	1-4 weeks	
Diurnal cycle of boundary layer	1 dav	
Waves	min/hours	<u>ě</u>
convective clouds	5-15 min.	<u>ø</u> .
Boundary layer rolls	minutes	th Ir
Turbulence	seconds-	vstitu
Small scale processes are parameter	minutes erised	ALAT

Lifetimes of reactive	e chemical compounds	
CH4	5-8 years	Konir
O ₃	weeks (troposphere)-months (stratosphere)	7klijk n
СО	2-4 weeks	lederi
Stable hydrocarbons (e.g PAN)	days-weeks	ands Me
Short-lived hydrocarbons	minutes-hours	teor
NO _x (NO+NO ₂)	2 (boundary layer)-20 days (lowermost stratosphere)	blogisc
	5-15 minutes	a In
	milliseconds	stitu
Short-lived compounds are state: family concept	assumed to be in quasi-steady	alut

Conservation of mass / vertical fluxes In most CTMs the vertically integrated air mass divergence is initially not in balance with the surface pressure tendency (up to a few percent) Horizontal and vertical mass fluxes are often derived from data that have already been interpolated once to a grid, e.g. the 1x1 degree pressure level analyses from ECMWF. Another interpolation is needed to go to the CTM grid It is crucial to omit unnecessary interpolations to obtain the best possible vertical transport in the stratosphere. Use similar vertical model levels in CTM as in parent model (merging layers will have only a small effect) Integrate original wind data from model over CTM cell boundaries (e.g. in spectral representation) Finally correct mass balance in each layer by adapting the horizontal mass fluxes slightly.

KNM

Koninklijk Nederlands Meteorologisch Instituut

Atmospheric chemistry is still observation limited

Techniques for validation with observations:

- Nudging = relaxation towards meteorological analyses from the major weather forecast centres
- Nesting grids of different spatial resolution: zooming into the region where observations are made
- Chemical data assimilation: objective
 determination of model+observation errors
- Inverse modelling of observations and emissions
- Chemical re-analysis: Use meteorological reanalyses to check if historical trends are reproduced

KNWI

Koninklijk Nederlands Meteorologisch Instituut

Acknowledgements and References

Contributions from

KNMI, Division Atmospheric composition research

Meijerink, R. van der A and T. van Noije

Reference general: G.Brasseur, Atmospheric Chemistry and Global Change, 2000

Information TM model: velthove@knmi.nl