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Abstract

In this paper we propose a new method of
determining the baseline in SAR Interferometry. In
particular, we show how the baseline parameters can be
retrieved from a Fourier analysis of the
interferometric
fringes.

1. INTRODUCTION

The use of spaceborne Synthetic Aperture Radar (SAR) has been
widely demonstrated as an important tool in the arena of global
remote sensing. Operating in the microwave band of the
electromagnetic spectrum, these radars are essentially active
imaging
devices, with information of the ground gathered from the
echoed pulses of the radar beam. The processing of these echoes,
yields not only amplitude values, which when displayed give the
characteristic SAR image, but also phase information. Indeed the
complex
data which characterizes the ground reflectivity also embodies
topographical information of the underlying terrain. The
utility
of this phase information was first demonstrated by Graham [1]
where he used two vertically separated airborne antennas
to
receive simultaneously backscattered signals from the terrain. By
coherently adding the signals recieved, he was able to
produce a
pattern of nulls similar to interferometric fringes observed in
optical work. He further demonstrated that these fringes
could be
used in conjunction with the range information to yield height
profiles of the terrain. This technique which forms the basis
of
what is called SAR Interferometry or INSAR for short, has also
been employed in spaceborne systems. In such systems the
separation of the antennas, called the baseline is
obtained by utilizing a single antenna in a repeat pass [2,3].

To convert the interferomeric phases to absolute surface
heights, it has been shown [4] that an accurate determination of
the
baseline is required. While baselines can be estimated from
orbit ephemerides, the uncertainties associated with some of
these
parameters may introduce errors that may be unacceptable
for most INSAR applications. For instance in differential
inteferometry
work where measurements of earth displacements of
the order of a few centimeters are required [5], a high level of
accuracy in
the baseline is often needed.

In this contribution we examine the issue of baseline
computation. In this regard we provide a theoretical framework in
which the
baseline can be accurately determined from a given
interferogram. The method proposed here is suitable for
applications such as
differential interferometry where knowledge
of the ground terrain (DEM) is assumed to be known.

2. SAR INTERFEROMETRY

We begin with a brief overview of SAR Interferometry that will
be relevent to our analysis. Consider two radar systems S1
and S2 ,
separated by a baseline vector b
illuminating the same ground area as illustrated in Fig.1.
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Fig.1: Typical geometry of a cross-track
interferometric SAR

For a typical ground point P with elevation height y
the interferometric phase 1 (2)
associated with a signal transmitted and
recieved at S1
(S2 ) is

  (1)

where r1(2) = |r1(2)|
and is the wavelength of the radar system. Now the phase
difference between the two pulses is given by

  (2)

which simplifies to:

  (3)

in the case of spaceborne systems with b = |b|
<< r1. (Angles q and q0
in equation (3) are angles defined in Fig.1). It is evident
from
(3) that if the phase difference and the baseline parameters (b,o)
are known then one can, in principle, obtain the
coordinates of P:

  (4.a,b)

where

  (4c)



.

It should be noted that the phase difference appearing in
equation (2) or (3) is the absolute unwrapped phase which cannot
be
measured directly. In practice, what one does measure is the
wrapped phase:

  (5)

where n is sum integer. Here the value of n has
to determined independently; a process known as phase unwrapping
. It should
also be noted the quantities b and o
which characterize the baseline may not be constant for the
entire scene.

To generate the interferogram, the two complex images must be
first co-registered to within 0.1 pixel accuracy. The
(normalized)
interferogram is defined as the complex degree of
coherence , which for each pair of co-registered complex values s1
,s2, is given
by

  (6.a)

where the bracket <...> represents an ensemble
average.

  (6.b)

The phase of is the interferometric phase while its magnitude
gives the degree of coherence. To illustrate this, Figs[2] and
[3] are
the phase and the coherence maps of Singapore generated
from a pair of complex images acquired by ERS1/2 satellites.

Fig.2: Phase image of
Singapore Fig.3: Coherence image
of Singapore
3. FOURIER ANALYSIS



In this section we analyse the phase function in the fourier
domain. To this end, we begin by considering a flat terrain
characterized by the equation

  (7)

where h represents the height of the satellite. It is
advantages to recast eqn (3) in slant range coordinate r
since complex images
are always acquired in this projection. On
substituiting (7) into (3) one obtains

  (8)

Here, without loss of generality, we need only to consider
values of o between 0 and . Now the above
phase, as mentioned earlier,
is the unwrapped phase . It is
instructive, at this stage to consider the function

  (9)

which does not distinguish between the wrapped and the
unwrapped phases. In other words, one can construct from the
measured
wrapped phase without losing its validity as being
defined for the unwrapped phase. Moreover, its Fourier transform

  (10)

can also be evaluated analytically using the stationary phase
approximation. The limits rmin and rmax
correspond to the range
values of the boundary pixels chosen from
the interferogram. For instance in the case of the interferogram
of Fig.2, if we limit
ourselves to a subset defined by the
boundary (within the figure), this values correspond to range
values of the left-most and the
right-most pixels of the
rectangle. Before proceeding further, it is instructive to
consider the power spectrum of this function for
the
interferogram of Fig.2.

Fig.4 Power spectrum corresponding to (k)
evaluated for the phase image of Fig.2.

Here the fourier tansform has been taken for the region
enclosed in the rectangle.

Now for the integral (10), with given by (8), the non
vanishing contribution comes from values of k given by



  (11)

Here it is important to note that the spectrum of (k)
is bandlimited. This follows from the limits inherent in r.

More importantly, the above function displays a monotonic
dependence on r which is also single-valued. This
effectively means
that one can expect a spectrum that is
characterized by a single band k [k1 , k2]
where k1 and k2 are k
values evaluated at the
boundaries of r. These features
are exemplified by the following simulated results:

Fig. 5 Power spectrum
of (k) obtained for various angles o with
the baseline fixed at 100m.

Fig.6: Values of k1
and k2 corresponding to k
values evaluated
at rmin and
rmax respectively, plotted
against o.

A closer analysis of k1 and k2
further ellucidates the following characteristics:

0 q < qmin qmin q qmax qmax < q

k1 < 0 k1 > 0 k1 > 0

k2 < 0 k2 < 0 k2 > 0

Here qmin = cos-1(h/rmin)
and qmax = cos-1(h/rmax).

4. BASELINE DETERMINATION

From measured values of k1 and k2
,the baseline parameters (b,q0)
can be evaluated as follows. By denoting

  (12.a, b)



  (13.a, b)

in equation (11), one obtains two equations:

  (14)

which can be solved for bx and by.
The baseline parameters (b, q0) are then
recovered via:

  (15.a)

  (15.b)

The analysis so far is valid only for a terrain which is flat.
In most realistic situations, however this is often not the case.
In the
following we generalize the equations above, so that its
applicability can be extended to a terrain which is not flat.

To the end, we begin by replacing (8) by:

  (16)

where y a function of x, is assumed to be known. In the
present case, it is convenient to recast the integral (10) back
to the
ground range coordinates:

  (17)

where xmin and xmax are related to rmin
and rmax respectively through the equation .

Here, if the Jacobian does not vary rapidly within the limits
of the integration, one can apply the method of stationary phase
to
evaluate the spectral function. Indeed by setting:

  (18)



one obtains:

  (19)

which can be further reduced to:

  (20)

Again, this equation is to be taken within the limits of x
imposed in (17). It is interesting to note that when y=0
the above
equation reduces to (11). Now, for the present case,
the above function, depending on y, may not be monotonic or even
single
valued for the specified range of x values.

If this happens to be the case, equation (20) can be used in
determining a subset over which these conditions are satisfied.

These boundary values can then be fed into (20) to yield the
corresponding k values. The two equation thus generated can be
solved to yield b and q0 as in
the flat case.

Figs.7 and 8 illustrate the power spectrum of two different
terrain types.

Fig. 7: Power spectrum
corresponding to a terrain modelled by y
=
c.exp[-(x-m)/2s2], with
c=500, m=334012, s=137471,

xmax=374425.44,
xmin=293599.20, b=100, q0=90.

Fig. 8: Power spectrum
corresponding to a terrain modelled by y
= c.(1-cos[
6.p.(x-xmin) / (xmax-xmin)]),
with c=100,
xmax=374425.44,
xmin=293599.20, b=100, q0=90.

To summarize briefly, we have shown how the baseline can be
determined from an interferogram. Traditionally, the baseline
parameters usually serve as inputs in DEM generation. Here, we do
the converse. In other word, from knowledge on the ground



terrain, we show that the baseline (both the normal and
perpendicular components) can be obtained from a detailed
analysis of
the interferometric fringes. This is particulary
useful in differential interferometric work where the DEM is
assumed known, and an
accurate value of the baseline is required.
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