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Abstract

In this study, we present a classification method
using both optical and SAR data in order to perform
landcover
classification. We investigate the use of a vector of
information, composed of a serie of
signatures derived from
both SAR and INSAR data. First, different relevant parameters
are derived from
ERS-SAR data using multitemporal and
interferometric analysis. Optical data is then used to define
a
training set in to order to perform a supervised
classification. Our test site is located in a tropical area,
in the coastal region of Central Sumatra, Indonesia. This
site has a wide variety of landcover types. The
region has
been undergoing rapid deforestation with the logging of
commercially exploitable timber and
the conversion of forest
to agricultural land. Our results demonstrate that ERS-1/2
tandem data is more
suitable than the 35 days repeat pass in
discriminating various landcover types. The results of
classification using these techniques are compared with
existing landuse maps and information derived
from SPOT and
LANDSAT data.

 

I. Introduction

The use of spaceborne remote sensing for forest and landuse
applications has been widely demonstrated as an important tool,
particularly for forest monitoring and landcover identification.
More importantly, the easy availability of data on a regular
basis
from operational satellites such as ERS, JERS, RADARSAT,
SPOT and LANDSAT has created the potential for such an analysis
to be
implemented as a monitoring tool. This is immensely
important in areas where extensive logging activities are
prevalent. Optical
data, like SPOT, remain the best source of
information for forest monitoring and landuse classification,
with a high resolution and a
good discrimination for various
lancovers. While optical sensors have been successfully exploited
for such studies, their use in
tropical areas is severely limited
by weather conditions. Indeed, cloud cover poses the greatest
restriction to the acquisition of
data that may be required at
different intervals.

This limitation has been somewhat alleviated by the use of
Synthetic Aperture Radars (SARs) which are essentially
all-weather
systems. Typically such systems provide information
of the ground reflectivity, in a manner which is phase
preserving. The utility
of the phase information was first
demonstrated by Graham [1] where he used two vertically separated
airborne antennas to
receive simultaneously backscattered signals
from the terrain. The coherent addition of the signals received
by two spatially
displaced antennas, which forms the basis of
what is now called SAR Interferometry, provides useful
information about the
topography of the terrain. This technique
has also been employed in spaceborne systems where the
‘displacement of antennas’ is
achieved by a single
antenna in two separate passes of the satellite [2].

It has been shown that a multiptemporal analysis of SAR data
allows to monitor changes in landcover using the backscatter
change intensity. Moreover, it has been demontrated in [3,4] for
boreal forest and [7] tropical forest that the coherence
component derived from an interferometric pair gives additional
useful information for landcover classification.

In this paper, we present a supervised classification method
using both optical data and radar information derived from SAR
and
INSAR data. First, we present the different steps to derive a
serie of parameters from both amplitude and complex data. In
particular, we investigate the usefulness and the limitation of
tandem and 35-day repeat-pass interferometry for this
application. A
description of the supervised classification
method is given, where optical data is used to define the
training set and control the
classification process.

II. Test Site and Data

The test site is located in the coastal region of central
Sumatra in the Jambi province, Indonesia. This site has a wide
variety of
landcover types ranging from mangrove, swamp forest,
primary and secondary forests and agricultural land including
rice,
coconut, rubber and oil palm. The region has been
undergoing rapid deforestation with the logging of commercially
exploitable
timber and the conversion of forest to agricultural
land. A landcover map of 1:100 000 scale realised in 1992 is
available over this
area. A set of optical data composed of two
SPOT XS data (1996) and one Landsat TM data (1993) are used for
the classification
process. These data, in conjunction with the
landcover map of 1:100 000 scale realised in 1992, are also used
to validate the
result of the classification.

Both SAR.SLC and SAR.PRI data are used in this study for
multitemporal and interferometric analysis. A set of ERS-PRI data
acquired over one year (oct 95 to december 96) are used for
multitemporal studies. Interferometric pair acquired during
tandem
mission (April-June 1996) are used to derive the coherence
component.

 

Satellite Date Orbit Frame Pass Type Baseline (Bp,
Bn)

ERS-1 95/10/07 22107 3627+20%
SAT

descending PRI N/A
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ERS-1 96/05/04 25113 3627+20%
SAT

descending SLC (68, 139)

ERS-2 96/05/05 05440 3627+20%
SAT

descending PRI, SLC  

ERS-2 96/06/09 05941 3627+20%
SAT

descending PRI N/A

ERS-2 96/09/22 07444 3627+20%
SAT

descending PRI N/A

Table 1: List of SAR Data
(SAT: Shift Along the Track)

III. Methodology

First of all, we summarize the processing techniques applied
on SAR data for both multitemporal and interferometric studies.
Then,
we will present the methodology developed to perform the
classification using both optical and SAR data.

III.A. Processing techniques
III.A.1. Multitemporal analysis

Amplitude images SAR.PRI are analysed to derive different
parameters used in the classification process:

. backscattering coefficient so

. backscatter intensity change Ds0

. texture

First, an edge-preserving filter (Gamma-MAP, [8]) is performed
on each amplitude image in order to significantly reduce the
speckle within the image.

Then, backscatter intensity change Ds0 could be
estimated correctly as follow:

  (1)

Where  is the
intensity of the signal after filtering.

Texture parameters (variance and entropy) are derived from the
Grey-Level Co-occurrence Matrix using a large window (15x15).

III.A.2. Interferometric processing

Two main components are derived from an interferometric pair.
The phase is normally used to derive terrain height. The main
application is typically DEM generation, but this component could
be also used to estimate the tree height. Nevertheless, the high
level of noise over forested areas (especially tropical forest)
can not give good estimation of height. Then, for our purpose,
only
the coherence component derived from the interferometric
pair is used.

To generate the interferogram, the two complex images must be
first co-registered to within 0.1 pixel accuracy. This step is
crucial
in order to obtain a good quality of interferogram. A
first coarse registration is realised using a serie of ground
control points. The
lack of bright and clear targets over
tropical areas increases the difficulty of finding a good set of
GCP’s. Fine registration is then
perform using correlation
both on amplitude and phase.

The degree of coherence g for each pair (s1,
s2) of co-registered complex values s1,
s2 is given by:

  (2)

Where the bracket <...> represents an ensemble
average, which is estimated by the spatial average over a
finite-size window.

  (3)

The value N should be sufficiently large (i.e.: 3x12 or 4x16
pixels window in range and azimuth) to have a good estimation of
the
degree of coherence within the window.

A first study has been conducted to access the quality of the
interferograms that can be generated over tropical areas. Fig.
(1).a
and (1).b represent the histogram of coherence obtained
using tandem and 35-day repeat passes. Low coherence was expected
for vegetated areas, as a high coherence value over non-vegetated
areas (bare soils, grasslands and deforested areas).

 



Fig. 1.a: Histogram of
coherence for vegetated Fig. 1.b:
Histogram of coherence for vegetated and non-vegetated areas.
Tandem
Mode and non-vegetated areas. 35-days repeat-pass

For the tandem mode, there is a marked difference (of about
0.6) in the coherence level between the vegetated areas, where
coherence is expected to be low due to the effect of volume
scattering, and the non-vegetated areas. The latter, which
comprises
mainly of bare soil and deforested land, would be
expected to give high coherence values. This is, however, not the
case for the
35-day repeat-pass where the mean coherence level of
the non-vegetated areas has a value of about 0.3, which is also
the level
for the vegetated areas. Plausibly, this decorrelation
could be due to a change in weather conditions or land-use in the
35 days
between acquisitions. Thus, while the degree of coherence
in a tandem mode serves as a reliable discriminator between
vegetation
and non-vegetation, it is useless in the case of the
35-day repeat pass.

For forestry, tandem pairs are used to generate the
interferometric components in order to reduce the effect of
temporal
decorrelation of the signal between the two
acquisitions.

In addition, value of the baseline also plays an important
role on coherence level. It has been demonstrated in [5] that
coherence
level decreases when the baseline increases. For this
reason, we have selected interferometric pairs with baseline less
than 300m.

 

III.B. Classification method

The main idea of our method is to use all available
information derived from SAR and INSAR data to perform the
classification
process.

Using amplitude SAR images, the following parameters can be
derived:

. backscattering coefficient so

. backscatter intensity change Ds0 between two
images

. texture

Thus, five parameters can be taken into account using two
amplitude SAR images (so
1, so

2,
Ds0
21, texture1, texture2).
In addition,

degree of coherence between two complex SAR images
is computed using INSAR data.

On the whole, we can construct a vector of information I of
n-order. The number n of discriminators depends on the number of
SAR images taken into account for the analysis.

The following vector refers to a set of SAR data using two
different dates:

 
I = [so

1,
so
2, Ds0

21,
texture1, texture2,
g21]

(4)

 



Fig. 2 : Graph of the
classification method

First, a serie of training areas are selected from the SPOT XS
image, given a representative set for the different types of
landuse
found in the image. In this case study, 5 training areas
are chosen corresponding to primary forest, rubber, oil palm
plantation,
rice, bare soil. Then, a supervised classification is
performed on the SAR components using the previous training set.

IV. Results

A first analysis was conducted using 3 signatures (coherence,
the backscatter intensity (s o) and backscatter
intensity change (D s
o)) derived from one tandem
pair. The behaviour of the degree of coherence versus the
backscattering coefficient is first analysed
in order to
demonstrate the usefulness of both components.

Fig (3) points out the good discrimination between vegetated
(forest, plantation, cultivated areas) and non-vegetated areas
(bare
soil and deforested areas) using coherence. Nevertheless,
different types of landuse could not be separated using only the
coherence component. Oil palm plantation and rubber give the same
degree of coherence. However, the backscattering coefficient
so
can then be used to discriminate these two types of landcovers.
Unfortunately, primary forest and rubber could not be
separated
using both coherence and so.

The backscatter intensity change between two images acquired
at different dates could be used to discriminate various
landcover
types. Different cultivated areas can then be
identified by analysing the growth rate (2-3 months for rice).
The change over
seasons (dry and wet seasons) can alsso be a
discriminator between plantation (small change over the year) and
primary forest
(very stable).

Fig. 3: Plot of s o
as a function of coherence Fig. 4: Plot
of D s o as a function of coherence
for different classes of land-use.
Tandem mode for different
classes of land-use. Tandem mode

Fig (5).a shows a color composition of three amplitude images
(SAR.PRI full scene, R: 96/09, G: 96/05, B: 95/10) covering the
entire test site. The bright patch at bottom right corresponds to
the town of Jambi. Farming activities take place around the city
and along the river Batang Hari. Bright grey areas represent
primary and swamp forests. Changes in colour in the middle of the
image is related to logging areas, where rapid deforestation
takes place. Red patches correspond to new deforested areas,
while
yellow patches are related to regrowth areas. Coastal zone
is composed of various cultivated areas, crops like rice (top
right of the
image), and different types of plantation (coconut,
rubber and oil palm).

Fig (5).b is the coherence image over the same area. As
expected, low coherence is found for forest. High coherence is
related to
bare soil, deforested areas (center of image), or
small bushes. A very heterogeneous zone at the top right
corresponds to paddy
fields, for which various stages of growth
could be found at the same time.

Fig. (5).c represents a colour composition (RGB) of coherence
/ so / Dso. Areas with high coherence
appear clearly in red, when
areas with low coherence (primary and
swamp forests) correspond to light blue areas. The discrimination
between forest and non-
forest appears very clearly, with very
sharp edges. This image can be compared with Fig.(5).a.

Fig.
5.a Fig.
5.b

Figure (5)a,b,c:



Fig.
5.c

SAR
PRI and SLC data over Jambi province,
Sumatra, Indonesia

Scene center Lat. / Long. (deg.): -1.216 /
104.503

Frame: 2637 + 20% Shift Along Track

Orbit: 22107, 25113, 05440, 07444

a.: Colour composition of 3 amplitude images

R: 96/09/22, G: 96/05/04, B: 95/10/07)

b.: Coherence image (tandem pair 96/05/04-
05)

c.: Colour composition

R: coherence, G: Amplitude 96/09,

B: Amplitude 96/05

Two test sites have been selected from Fig (5).a.

The first one corresponds to a forested area where intensive
logging takes place, covering 25x20km.

Fig (6).a shows a colour composition of the three dates as
described before. The difference between forested areas and
plantation
is not clear. Changes in colour can be related to
change in moisture content and landuse (regrowth). For this
raison, it is difficult to
discriminate very clearly forest from
non-forest areas.

Fig. (6).b represents the coherence. Very strong contrast
between forested and non-forested areas is found. In addition,
this
information is recovered also in mountainous areas. In this
case, fig. (6).a gives less information, when relief distortion
is
dominant. Notice that change index could not give a good
discrimination between forest and plantation which are almost
stable in
time. In this case, only coherence can discriminate the
two.

However, Fig (6).c represents the colour composition with
coherence/so/Dso. Clear and sharp limits
between forest (yellow
patches) and non-forest areas (blue) are
very prominent.

The result can be visually compared with the SPOT XS image.
New deforested areas can be seen in Fig (6).c at the center
bottom
(circle). This area is still forested on the SPOT XS image
acquired 2 months before the tandem pair.

Fig. 6.a Fig. 6.b

Fig. 6.c Fig. 6.d



The following example show result of the classification
process over the coastal region, composed of swamp forest in the
bottom of
the image and cultivated areas along the coast (rice,
rubber and oil palm plantation, coconut).

Fig. 7.a Color
composition of 3 PRI

R: 96/09/22, G: 9605/04, B: 95/10/07

Fig. 7.b Coherence
image (tandem pair, May
96)

Fig.
7.c Colour composition

R: coherence, G: Amplitude 96/09, Amplitude
96/05

Fig. 7.d Landsat image . Date: June 9th
1989

Fig.
7.e Classification map obtained from
SAR/INSAR data and
using supervised

classification method.



Fig (7).a shows a colour composition of 3 PRI images. Canals,
used to irrigate paddy-fields, appears in yellow at the top left
of the
image. Grey patches correspond to swamp forest. Linear
features at the middle right correspond to intensive cultivated
areas.
Dark red patches along the river (top left) are related to
rice.

Coherence image (Fig (7).b) shows a good contrast between
plantation and forest. Logging areas located in hilly terrain
(bottom
left) appear clearly at the bottom left of the image.
Logging routes and deforested areas then appear with a high
coherence value
in fig (7).b. These areas are not clearly visible
in fig (7).a due to relief distortions which affect the amplitude
of the radar signal.

Fig (7).c represents the colour composition with coherence/so/Dso.
This image can be compared with the Landsat TM image (Fig.
(7).d)
acquired in 1989. Nevertheless, some changes in lancover occured
since 1989, especially along the boundary between
swamp forest
and cultivated areas.

Supervised classification is then performed on SAR/INSAR data
set, using training areas selected in the TM image. 4 classes was
used over this site: forest, rice, coconut, rubber. Swamp forest
is correctly classified (green), and a good contrast is obtained
with
rubber plantation (pink). Grey patches are related to
coconuts. Moreover, a mixing between rubber and swamp forest is
visible at
the bottom left of the image. Rice appears in red
(growing stage), and is located along the river. Nevertheless,
some
misclassifications appear, especially on heterogeneous areas
(mixing between coconut and rice).

V. Discussion / Conclusion

Multitemporal analysis is not sufficient for landcover
classification over tropical areas. Some landcover types can not
be
discriminated, due to similar so and Dso
(e.g.: forest and rubber).

However, it has been demonstrated that multitemporal study in
combination with interferometric analysis can give useful
information for landcover classification. The coherence component
appears as a new discriminator. We have based our method on
the
use of a vector of information of n-order, composed of a serie of
parameters derived from both SAR and INSAR data:
coherence , so,
Dso, texture. Optical data is then used to define a
training set in order to control the supervised classification.
Further analysis will be conducted to improve the classification
process, in order to reduce the percentage of misclassification.

Tandem pair is more appropriate for this kind of study, in
order to reduce the temporal decorrelation of the signal.
Moreover, small
baselines are required to avoid a degradation of
the level of the coherence due to baseline decorrelation.

Nevertheless, sensitivity to biomass remains low with C-band.
Moreover, L-band appears to be more suitable for this type of
application. To significantly improve the methodology,
combination of both ERS and JERS-1 data should be used for this
application. Backscattering coefficient and backscatter change
intensity could then be derived from JERS-1 Data, and combined
with coherence component extracted from ERS interferometric pair.

Examples presented in this paper show that the combination of
coherence, so and Dso allows to
discriminate various landcover
types, and also to distinguish
very fine features. For this reason, as an analogy with SPOT,
this colour composite (coherence, so,
Dso)
could be useful for visual interpretation in order to supplement
the lack of optical data.
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