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Fig 1 False colour Montfrague CHRIS PROBA image (MCPI).
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Site

Monfragüe (Mont Fragosum) is one of the most important sites for the 
preservation of the Mediterraneans ecosystem. 

Located in Spanish central-west (Extremadura) on the confluence of the Tajo 
and Tietar rivers, it has got a rich variety of big-sized birds (vultures, eagles...) 
and vegetation. 

Fire risk is specially high in this environment due to dry warm weather and 
human impact.
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Fire Model

Fire Hazard Models aim to compute the 
evolution of a forest fire on a region, 
expressed in terms of:

meteorological information, 
DEMs, …, and 
vegetation distribution
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Reasons

In order to preserve this ecological environment some experiments has been 
done:

Monfragüe Chris Proba Image (M.C.P.I.) acquisition.
Image processing for fire risk estimation using M.C.P.I.:

Quick estimation of vegetation covers
Endmember extraction.  
Abundance maps generation.
Endmember identification.

Field caempaign. 
Simultaneous field measurements
Airborne Hyperex camera image acquisition. 

.
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Endmember Identification

The first image processing task made was the identification of the endmember present on 
the scene. In order to perform this task, the AMEE  algorithm (R) was used.

Six endmembers were obtained and labelled from 1 to 6.

The highest  abundance  for endmember 1 (Fig 2) strongly correspond with Tajo and 
Tietar reservoirs and other water covers.  

Endmember 3 is more abundant next to the rivers and can be identified with soil. 

The white shapes in Fig 3 are circular irrigated crop,  which allow us to identify  
endmember 2 as vigorous vegetation. The higher gray levels can be identified with 
vigorous vegetation  in the north-oriented  face of the mountains. 

The areas with the highest fire risk are those that appear with higher grey levels in 
figure 5.
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Fig 1 Endmember,s spectral signature for (M.C.P.I.) image. 
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Image rectification

Using multi-angular CHRIS PROBA 
features it is possible to compute a 
more accurate vegetation 
distribution map.
In order to obtain this information 
we must georectify the five images 
acquired at different angles 
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Out of Nadir Georectified Images

Fig. 8 Georectified M.C.P.I.’s for the four angles
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Multi-angular/spectral Plot

Collecting the spectral plots for the same 
point on different images (angles) we 
obtain the Multi-angular/spectral 
signature. 
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Plot image

Fig. 9 Spectral surface view forGeorectified M.C.P.I.’s for 
the four C./P.angles
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Matrix Data Structure

In order to avoid the problems related 
with the simultaneous manipulation of the 
five different angle images a new data 
structure can be used.
This data structure includes for each pixel 
the following information: latitude, 
longitude, angle of observation and 
spectral signatures.
Figure 10 shows the elemental 
information for each pixel.
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Diffuse Matrix Data Structure
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Fig 10-Diffuse Matrix Data Structure
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Diffuse Matrix Size
Size relation behind one image in typical data structure and diffuse matrix one
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This figure shows diffuse matrix size (blue) and the raster image 
size (red) for the full image. One can clearly see that  the Diffuse 
Matrix format can make a better use of the space in disk. 
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Computation Speed

According with the image size reduction 
we obtain shorter computation times.

I.e., the complexity to process a raster 
image using AMEE algorithm is given by:
samples*lines*bands*Structuring_Element_Size.

Using Diffuse Matrix the complexity is
samples’*lines’*bands*Structuring_Element_Size

With:
samples’≤samples and lines’ ≤lines.
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Parallel Computation I

Diffuse Matrix data structure allows 
distributed computation of the 
multi-angular and multi-spectral      
information taking into account 
different latitude and longitude.
The parallelism is directly included 
into the data structure, allowing the 
distributed processing of the data 
transparently to the users.  
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Parallel Computation II

Users define their functions to work in latitude 
and longitude, independently of the division made 
on the image or sets of images encapsulated into 
the structure.
They can access the same Diffuse Matrix 
concurrently.
The inclusion of data obtained at different times, 
different spatial resolution, etc. expands greatly 
the complexity of the algorithms, and this 
structure ease this complexity and poses as one 
of the best solutions to integrate everything 
together and exploit the parallelism.
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Temperature Estimation 

Forest fire evolution depends strongly on 
the temperature.
Infrared sensors can be used to obtain 
an accurate measurement of the cover 
temperature. However, the optical 
spectral signature can be used to obtain a 
cover temperature estimated value. 
Figure 11 shows the spectral signature of 
a black body (according Plank’s law) and 
the CHRIS spectral signature for a pixel of 
soil in the Monfragüe’s image.
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Estimation of cover temperature

Temperature Estimation
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Fig. 11 – CHRIS and black body’s spectral signatures
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Ground Campaing
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Conclusions

The areas with higher fire risk (senescent vegetation) has 
been identified:

Automated endmember extraction and mixture 
analysis.

Angular information has been  used in order to obtain a 
more accurate vegetation distribution map.
A new data structure (diffuse matrix)  were introduced in 
order to obtain a better way of CHRIS PROBA’s images 
parallel  computation. 
A method for field temperature estimation has been 
discussed.
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Thank you
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