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Fig 1 False colour Montfrague CHRIS PROBA Image (MCPI).
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Site

Monfraglie (Mont Fragosum) is one of the most important sites for the
reservation of the Mediterraneans ecosystem.

olLocated in Spanish central-west (Extremadura) on the confluence of the Tajo
and Tietar rivers, it has got a rich variety of big-sized birds (vultures, eagles...)
and vegetation.

oFire risk is specially high in this environment due to dry warm weather and
human impact.
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Fire Model

o Fire Hazard Models aim to compute the
evolution of a forest fire on a region,

expressed in terms of:

meteorological information,
DEMs, ..., and
vegetation distribution
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Reasons

order to preserve this ecological environment some experiments has been
one:

oMonfrague Chris Proba Image (M.C.P.1.) acquisition.

olmage processing for fire risk estimation using M.C.P.1.:

Quick estimation of vegetation covers
o Endmember extraction.
o Abundance maps generation.
o Endmember identification.

oField caempaign.
Simultaneous field measurements
Airborne Hyperex camera image acquisition.
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Endmember Identification

The first image processing task made was the identification of the endmember present on
the scene. In order to perform this task, the AMEE algorithm (R) was used.

oSix endmembers were obtained and labelled from 1 to 6.

oThe highest abundance for endmember 1 (Fig 2) strongly correspond with Tajo and
Tietar reservoirs and other water covers.

oEndmember 3 is more abundant next to the rivers and can be identified with soil.
oThe white shapes in Fig 3 are circular irrigated crop, which allow us to identify
endmember 2 as vigorous vegetation. The higher gray levels can be identified with

vigorous vegetation in the north-oriented face of the mountains.

oThe areas with the highest fire risk are those that appear with higher grey levels in
figure 5.
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Fig 1 Endmember,s spectral signature for (M.C.P.l.) image.
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| " 'Fig 3-Abundance map for endmember 2 (crops)



o

Fig 4 Abundance map for endmember 4 (soil)
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G ) Abundance map for endmember 5 (senesc. veg.)



6 Abundance ma for endmember 6 soll.



Image rectification

o Using multi-angular CHRIS PROBA
features it Is possible to compute a
more accurate vegetation
distribution map.

o In order to obtain this information
we must georectify the five images
acquired at different angles
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Fig. 7 Georectified M.C.P.I
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Multi-angular/spectral Plot

o Collecting the spectral plots for the same
point on different images (angles) we
obtain the Multi-angular/spectral
sighature.

4th CHRIS/Proba Workshop

16



Plot Image

Fig. 9 Spectral surface view forGeorectified M.C.P.1.’s for

mg the four C./P.angles



Matrix Data Structure

o In order to avoid the problems related
with the simultaneous manipulation of the
five different angle images a new data
structure can be used.

o This data structure includes for each pixel
the following information: latitude,
longitude, angle of observation and
spectral signatures.

o Figure 10 shows the elemental
Information for each pixel.
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Diffuse Matrix Size

Size relation behind one image in typical data structure and diffuse matrix one
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o This figure shows diffuse matrix size (blue) and the raster image
size (red) for the full image. One can clearly see that the Diffuse
Matrix format can make a better use of the space in disk.
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Computation Speed

o According with the image size reduction
we obtain shorter computation times.

o l.e., the complexity to process a raster
Image using AMEE algorithm is given by:
samples*lines*bands *Structuring_Element_Size.

o Using Diffuse Matrix the complexity is
samples’*lines’*bands *Structuring_Element_Size

o With:

samples’<samples and lines’ <lines.
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Parallel Computation |

o Diffuse Matrix data structure allows
distributed computation of the
multi-angular and multi-spectral
Information taking into account
different latitude and longitude.

o The parallelism is directly included
Into the data structure, allowing the
distributed processing of the data
transparently to the users.
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Parallel Computation |

o Users define their functions to work in latitude
and longitude, independently of the division made
on the image or sets of images encapsulated into
the structure.

o They can access the same Diffuse Matrix
concurrently.

o The inclusion of data obtained at different times,
different spatial resolution, etc. expands greatly
the complexity of the algorithms, and this
structure ease this complexity and poses as one
of the best solutions to integrate everything
together and exploit the parallelism.
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Temperature Estimation

o Forest fire evolution depends strongly on
the temperature.

o Infrared sensors can be used to obtain
an accurate measurement of the cover
temperature. However, the optical
spectral signature can be used to obtain a
cover temperature estimated value.

o Figure 11 shows the spectral signature of
a black body (according Plank’s law) and
the CHRIS spectral signature for a pixel of
soil in the Monfrague’s image.
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Estimation of cover temperature

Temperature Estimation
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Fig. 11 — CHRIS and black body’s spectral signatures
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Ground Campaing
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Conclusions

o The areas with higher fire risk (senescent vegetation) has
been identified:

Automated endmember extraction and mixture
analysis.

o Angular information has been used in order to obtain a
more accurate vegetation distribution map.

o A new data structure (diffuse matrix) were introduced in
order to obtain a better way of CHRIS PROBA’s images
parallel computation.

o A method for field temperature estimation has been
discussed.
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