

GOCE in Brief

What?

GOCE was ESA's first Earth Explorer satellite in orbit. It used a **sophisticated gravity gradiometer instrument** to provide an accurate and detailed global model of Earth's gravity field and geoid

Geoid

ESA's GOCE mission delivered the most accurate model of Earth's geoid ever produced, which is crucial for deriving accurate measurements of ocean circulation, sea-level change and terrestrial ice dynamics

Why?

GOCE data supports oceanography, solid Earth physics, geodesy and sea-level research, and significantly contributes to furthering our understanding of climate change

Heritage

Archived data still provide a wealth of information and are maintained and improved in the frame of the Heritage Space Programme

Data Access

https://earth.esa.int/eogateway/missions/goce/data

For more information visit:

https://earth.esa.int/eogateway/missions/goce

When?

GOCE was taken into orbit on 17 March 2009, on a **Rockot launcher** from the Plesetsk Cosmodrome in Russia. It orbited at **just 270 km altitude** to maximise its sensitivity to variations in Earth's gravity field

Re-entry

After 4 years and 8 months in orbit, on 21 October 2013, the GOCE mission came to a natural end and the satellite began its descent towards Earth, with data collected until its disintegration in the lower atmosphere

Where?

Built by a consortium of 41 companies from 13 European countries, led by **Thales Alenia Space** from Italy and France, **EADS Astrium** from Germany and **ONERA** from France

Seismometer

GOCE became **the first seismometer in orbit** when it detected sound waves from the massive earthquake that hit Japan on 11 March 2011

The GOCE mission generated more than 4 TB of open and free data, which supported more than 1300 projects producing over 1200 scientific publications

