Time Series Decomposition Analysis for Compact Polarimetry

S. R. Cloudea, D. G. Goodenoughb,c, H. Chenb

a AEL Consultants, Cupar, Fife, Scotland, UK, e-mail: aelc@mac.com
b Natural Resources Canada, Victoria, BC, Canada, e-mail: dgoodeno@nrcan.gc.ca, hchen@nrcan.gc.ca
c Computer Science, University of Victoria, Victoria, BC, Canada, e-mail: dggooden@uvic.ca
RCM: Radar for Forestry

- 3 satellite constellation
- Launch 2015-2017
- C-Band Imaging Radar

Ecosystem Monitoring

<table>
<thead>
<tr>
<th>User Requirements</th>
<th>Expected Results and Benefits</th>
<th>SAR Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forestry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Clearcut harvest with partial cut detection.</td>
<td>• Better assessment of forestry parameters.</td>
<td>Monitoring riparian leave strips in forest clearcuts with multi-temporal RADARSAT Fine 2 mode image data.</td>
</tr>
<tr>
<td>• Forest typing.</td>
<td>• Improved forestry management.</td>
<td></td>
</tr>
<tr>
<td>• Biomass estimation.</td>
<td>• Better production capacity of forest lands.</td>
<td></td>
</tr>
<tr>
<td>• Disturbance detection.</td>
<td>• Canadian international leadership in forest management and monitoring.</td>
<td></td>
</tr>
</tbody>
</table>

• Maritime Surveillance
• Disaster Monitoring
• Eco-system Monitoring

...potentially using compact polarimetry: RHC transmit.. H&V receive...
m-alpha Decomposition

2-layer Vegetation Model

Our approach...

Compact Decomposition

\[
g = 2m_v \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \frac{m_s}{2} \begin{bmatrix} 1 \\ \sin 2\alpha_s \cos \phi \\ \sin 2\alpha_s \sin \phi \\ \cos 2\alpha_s \end{bmatrix}_{RHC}
\]

\[
\begin{align*}
 m_v &= \frac{1}{2} g_0 (1 - D_p) \\
 m_s &= 2 g_0 D_p \\
 \alpha_s &= \frac{1}{2} \tan^{-1}\left(\frac{\sqrt{g_1^2 + g_2^2}}{g_3}\right) \\
 \phi &= \arg(g_1 + ig_2)
\end{align*}
\]

Random Volume RV \quad Rank-1 \quad Fully invertible model

...but
HV is not directly measured in Compact...but it can be estimated from a model e.g.

\[t_{33} = 4 \sigma_{HV} = \frac{1}{2} g_0 (1 - D_p) \Rightarrow \sigma_{HV} = \frac{1}{8} g_0 (1 - D_p) \]

Compact Crosspol estimation

Notes:

- HV estimate corresponds to volume scattering in Freeman-Durden* decomposition
- Dp is the degree of polarization (a coherence)
- VEGETATION MONITORING LEADS TO LOW COHERENCE STATISTICS
- FILTERING AND ESTIMATION NON-TRIVIAL….space-time filtering considered

RADARSAT-2 TIME SERIES

HINTON, ALBERTA, 15 consecutive FQW datasets

PETAWAWA, ONTARIO, 16 interrupted data sets

<table>
<thead>
<tr>
<th>Track</th>
<th>Petawawa FQ9 (A01-28') A, 22:35 UTC</th>
<th>Petawawa FQ10W (A01-30') D, 14:12 UTC</th>
<th>Hinton Tmax/min (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31/12/08 -14.8/-21.3 09/09/11</td>
<td>30.4/1.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24/01/09 -14.8/-25.8 03/10/11</td>
<td>13.4/2.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17/02/09 -0.4/-16.8 27/10/11</td>
<td>4.4/-4.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11/07/09 26.4/10.3 20/11/11</td>
<td>-4.3/-25.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>04/08/09 25.6/14.1 14/12/11</td>
<td>-2.5/-14.3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>28/08/09 17.9/10.6 07/01/12</td>
<td>1.4/-5.9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>21/09/09 21.2/0.9 31/01/12</td>
<td>6.0/-3.8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15/10/09 6.0/-4.8 24/02/12</td>
<td>-5.5/-13.8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>08/11/09 16.7/-3.2 19/03/12</td>
<td>5.1/-12.3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>02/12/09 6.8/-2.3 12/04/12</td>
<td>7.3/0.3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>26/12/09 0.3/-2.5 06/05/12</td>
<td>14.9/-5.5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12/02/10 -7.8/-20 30/05/12</td>
<td>16.7/2.8</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>23/08/10 25.8/16.8 23/06/12</td>
<td>20.6/12.3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10/10/10 20.1/-3.4 17/07/12</td>
<td>29.1/10.2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>03/11/10 8.7/-6.1 10/08/12</td>
<td>25.5/5.1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>27/11/10 -1.6/-10.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Space vs. Time Filtering of Compact Dp

- Space only
- Time average
- Combined time space average

Degree of polarization

Time
\[c = \begin{bmatrix} a_1 & a_2 & d_1 & d_2 & d_3 & v_1 & v_2 & s_1 \end{bmatrix} \]

8 thresholds values set using physics of decomposition.
Rule Based Land-Use Classifier

Spatial averaging: 2 cases:
1. multilook (ML)
2. ML+ 5x5 boxcar

Products used:
- $2g_0$
- α
- Dp
- Vol_{min}

$c = [20 \ 60 \ 0.25 \ 0.33 \ 0.5 \ -16 \ -22 \ -16]$
Petawawa C-Band Radar Classification
Hinton Optical Image
Hinton C-Band Radar Classification

Good general performance but poor biomass discrimination..

..augment C-band with X-band data..
POLInSAR Forest Height product: Tandem-X

good for forest height...poor for other land-use types
3-level Forest Height Classifier: Tandem-X only
Merged C-Band Compact + Tandem-X Height
Conclusions

• Compact Mode leads to low coherence estimation for vegetation monitoring requires combined space-time filtering...
 ..we found time filtering to be useful, even over long periods..

• Good Filtering leads to design of robust rule-based classifier
 we used one test site (Petawawa) to train and then
 another (Hinton) for validation

• Found good general performance but poor discrimination of forest biomass
 so augmented by Tandem-X POLInSAR height estimate..
 3-level high biomass classes

• Merged products into consistent classifier X-Band POLInSAR + C-band compact

• Could be used to augment forest coverage of other sensors e.g. ESA-BIOMASS
Acknowledgements:

This work was supported by Natural Resources Canada

Thanks to DLR for provision of the Tandem-X data used under their Tandem-X science program

Thanks also to the Canadian Space Agency (CSA) and Macdonald Dettwiler and Associates (MDA) for provision of the Radarsat-2 data used.

One of us (DGG) also wishes to thank the University of Victoria and the Natural Sciences and Engineering Research Council (NSERC) of Canada for their support.